4x/-5=6y/7=3z/8 và x+3y-2z=-273
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{4x}{-5}=\frac{6y}{7}=\frac{-3z}{8}\)(1) và x + 3y - 2z = -273
(1) => \(\frac{x}{\frac{-5}{4}}=\frac{3y}{\frac{7}{2}}=\frac{-z}{\frac{8}{3}}\)=> \(\frac{x}{\frac{-5}{4}}=\frac{3y}{\frac{7}{2}}=\frac{-2z}{\frac{16}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{-5}{4}}=\frac{3y}{\frac{7}{2}}=\frac{-2z}{\frac{16}{3}}=\frac{x+3y-2z}{\frac{-5}{4}+\frac{7}{2}-\frac{16}{3}}=\frac{-273}{\frac{-37}{12}}=\frac{3276}{37}\)
=> \(\frac{x}{\frac{-5}{4}}=\frac{3276}{37}\)=> \(37x=3276\left(\frac{-5}{4}\right)\)=> x = \(\frac{-4095}{37}\)
và \(\frac{3y}{\frac{7}{2}}=\frac{3276}{37}\)=> \(111y=3276.\frac{7}{2}\)=> y = \(\frac{3822}{37}\)
và \(\frac{-2z}{\frac{16}{3}}=\frac{3276}{37}\)=> \(-74z=3276.\frac{16}{3}\)=> z = \(\frac{-8736}{37}\)
=> A = x + y + z + 1 = \(\frac{-4095}{37}\)+ \(\frac{3822}{37}\)+ \(\frac{-8736}{37}\)+ 1 = \(\frac{-8972}{37}\).
\(\dfrac{4x}{-5}=\dfrac{6y}{7}=\dfrac{-3z}{8}\)
nên \(\dfrac{x}{-\dfrac{5}{4}}=\dfrac{y}{\dfrac{7}{6}}=\dfrac{z}{-\dfrac{8}{3}}\)
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{-\dfrac{5}{4}}=\dfrac{y}{\dfrac{7}{6}}=\dfrac{z}{-\dfrac{8}{3}}=\dfrac{x+3y-2z}{-\dfrac{5}{4}+3\cdot\dfrac{7}{6}-2\cdot\dfrac{-8}{3}}=-36\)
=>x=45; y=-42; z=96
|x+y+z+1|=|45-42+96+1|=100
a)(2x-5)^2006>/0( mọi x)
(y^2-1)^2008>/0(mọi x)
(x-z)^2010>/0(mọi x)
Để (2x-5)^2006+(y^2-1)^2008+(x-z)^2010=0
=>2x-5=y^2-1=x-z=0
=>x=2,5;y=1;z=2,5