K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}=\frac{y-x}{7-5}=\frac{48}{2}\)\(=24\)

Từ \(\frac{x}{5}=24=>x=120\)

\(\frac{y}{7}=24=>y=168\)

\(\frac{z}{2}=24=>z=48\)

Vậy x=120, y=168, z=48

k cho mk nha!

4 tháng 12 2016

đó là áp dụng tính chất của dãy tỉ số bằng nhau nha!

7 tháng 12 2015

1,x/7=y/3 va x-24=y

=>x/7=y/3 va x-y=24

adtcdts=n: 

x/7=y/3=x-y/7-3=24/4=6

Suy ra :x/7=6=>x=6.742

y/3=6=>y=3.6=18

2,Adtcdts=n:

x/5=y/7=z/2=y-x/7-5=48/2=24

suy ra : x/5=24=>x=120

y/7=24=>y=168

z/2=24=>z=48

15 tháng 8 2020

Ta có:

\(x^4+y^4+y^4+16\ge4\sqrt[4]{16x^4y^8}=8xy^2\)

Tương tự:

\(y^4+z^4+z^4+16\ge8yz^2\)

\(z^4+x^4+x^4+16\ge8zx^2\)

Cộng vế với vế ta được: \(3\left(x^4+y^4+z^4\right)+48\ge8xy^2+8yz^2+8zx^2\)

\(\Leftrightarrow24\ge xy^2+yz^2+xz^2\)

Dấu = xảy ra khi x = y = z = 2

11 tháng 11 2021

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{4a-3b+2c}{4-6+6}=\dfrac{36}{4}=9\\ \Rightarrow\left\{{}\begin{matrix}a=9\\b=18\\c=27\end{matrix}\right.\\ \dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{16}=\dfrac{x-y+z}{10-15+16}=\dfrac{-49}{11}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{490}{11}\\y=-\dfrac{735}{11}\\z=-\dfrac{784}{11}\end{matrix}\right.\)

4 tháng 7 2017

2.

a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)

\(\Rightarrow x=6;y=8;z=10\)

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)

\(\Rightarrow x=-9;y=-12;z=-16\)

3.

a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

\(\Rightarrow x=12;y=28;z=8\)

b) x : y : z = 2 : 5 : 7

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'

\(\Rightarrow x=6;y=15;z=21\)

4 tháng 7 2017

2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)

=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10

b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)

=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)

3) a, Đặt k=x/3=y/7=z/2

\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

=> k2 = 4 => k = ±2

Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)

b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21

9 tháng 8 2019

Từ x/3=y/5=z/7.áp dụng tính chất dãy tỉ số bằng nhau

 Đc:  x/3=y/5=z/7=(2x-3y+4x)/(6-15+28)=48/19

=>x=48/19*2=144/19

=>y=48/19*5=240/19

=>z=48/19*7=336/19

  study well

  k nha

 ai k đúng cho mk mk trả lại gấp dôi

   ai ghé qua xin hãy để lại 1 k

Áp dụng tính chất của dãy tie số bằng nhau ta có :

 \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{2x}{6}=\frac{3y}{15}=\frac{4z}{28}=\frac{2x-3y+4x}{6-15+28}=\frac{48}{19}\)

Từ \(\frac{2x}{6}=\frac{48}{19}\Rightarrow x=\frac{144}{19}\)

\(\frac{3y}{15}=\frac{48}{19}\Rightarrow x=\frac{240}{19}\)

\(\frac{4z}{28}=\frac{48}{19}\Rightarrow z=\frac{336}{19}\)

Study well 

24 tháng 10 2021

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\Rightarrow x=10\\\frac{y}{3}=5\Rightarrow y=10\end{cases}}\)

Vậy x = 10, y = 10 

b, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{7}=\frac{y}{8}=\frac{2x+3y}{2.7+3.8}=\frac{4}{60}=\frac{1}{12}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{1}{12}\Rightarrow x=\frac{7}{12}\\\frac{y}{8}=\frac{1}{12}\Rightarrow y=\frac{2}{3}\end{cases}}\)

Vậy ... 

24 tháng 10 2021

\(c,3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{4}=\frac{y}{3}=\frac{x-y}{4-3}=\frac{1}{1}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=1\Rightarrow x=4\\\frac{y}{3}=1\Rightarrow y=3\end{cases}}\)

Vậy ....

d,Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{x-y}{3-4}=\frac{48}{\left(-1\right)}=\left(-48\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-48\right)\Rightarrow x=-144\\\frac{y}{4}=\left(-48\right)\Rightarrow y=-192\end{cases}}\)

Vậy ...

21 tháng 10 2018

(x-1000)/24+(x-998)/26+(x-996)/28 = 3

Lời giải:

  1. Tập xác định của phương trình

  2. Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

  3. Chia cả hai vế cho cùng một số

  4. Đơn giản biểu thức

  5. Lời giải thu được

Ẩn lời giải 

Kết quả: Giải phương trình với tập xác định

x=1024

20 tháng 7 2015

\(\frac{x}{3}=\frac{y}{4};\frac{x}{5}=\frac{z}{7}\) va x-y+z=(-48)

Lấy mẫu của hai phân số\(\frac{x}{3};\frac{x}{5}\) la 3 va 5 lam boi  chug cua nhau

BC(3;5)=15

\(\Rightarrow\frac{5x}{15}=\frac{y}{4};\frac{3x}{15}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{x}{15}=\frac{z}{21}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{21}=\frac{x-y+z}{15-20+21}=-\frac{48}{16}=-3\)

Suy ra : \(\frac{x}{15}=-3\Rightarrow x=-3.15=-45\)

\(\frac{y}{20}=-3\Rightarrow y=-3.20=-60\)

\(\frac{z}{21}=-3\Rightarrow z=-3.21=-63\)