Cho hình vuông ABCD. Gọi M, N là trung điểm của BC, CD.
A, Chứng mình rằng AN \(\perp\) DM
B, Gọi H là giao điểm của AN và DM. Biết AB = 2. Tính AH và cos góc MAN
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
11 tháng 4 2023
a: Xét tứ giác BMDP có
BM//DP
BM=DP
=>BMDP là hình bình hành
b: Xet ΔADH có P là trung điểm của AD và PQ//DH
=>Q là trung điểm của AH
ΔABP=ΔDAN
=>góc ABP=góc DAN
=>góc ABP+góc BAQ=90 độ
=>ΔABQ vuông tại Q
=>BQ vuông góc AH
=>ΔBAH cân tại B
=>BA=BH
25 tháng 2 2023
a: Xét tứ giác ADKE có
AE//DK
AE=DK
góc EAD=90 độ
=>ADKE là hình chữ nhật
b: Xét tứ giác AECK có
AE//CK
AE=CK
=>AECK là hình bình hành
=>AK//EC
=>AK vuông góc DM
Xét tg vuông ADN và tg vuông DCM có
AD=CD (cạnh hình vuông) (1)
Ta có
CD=BC (cạnh hình vuông)
NC=ND; MB=MC (gt)
=> ND=MC=MB=BC/2 (2)
Từ (1) và (2) => tg ADN = tg DCM (Hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{DAN}=\widehat{CDM}\)
Mà \(\widehat{CDM}+\widehat{ADM}=\widehat{ADC}=90^o\)
\(\Rightarrow\widehat{DAN}+\widehat{ADM}=90^o\)
Xét tg ADH có
\(\widehat{DAN}+\widehat{ADM}=90^o\Rightarrow\widehat{AHD}=90^o\Rightarrow AN\perp DM\)
b/
Xét tg vuông ADN có
\(DN=\dfrac{CD}{2}=\dfrac{AB}{2}=\dfrac{2}{2}=1\)
\(AN=\sqrt{AD^2+DN^2}=\sqrt{2^2+1^2}=\sqrt{5}\) (Pitago)
\(DN^2=NH.AN\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow NH=\dfrac{DN^2}{AN}=\dfrac{1^2}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)
\(\Rightarrow AH=AN-NH=\sqrt{5}-\dfrac{\sqrt{5}}{5}=\dfrac{4\sqrt{5}}{5}\)
Xét tg vuông ADN và tg vuông ABM có
AD=AB (cạnh hình vuông)
ND=MB (cmt)
=> tg ADN = tg ABM (Hai tg vuông có 2 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{DAN}=\widehat{BAM}=\alpha\)
Ta có \(\widehat{MAN}=\widehat{BAD}-\widehat{DAN}-\widehat{BAM}=\dfrac{\Pi}{2}-2\alpha\)
\(\Rightarrow\cos\widehat{MAN}=\cos\left(\dfrac{\Pi}{2}-2\alpha\right)=\sin2\alpha=2\sin\alpha.\cos\alpha\)
Mà
\(\sin\alpha=\dfrac{DN}{AN}=\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5};\cos\alpha=\dfrac{AD}{AN}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
\(\Rightarrow\cos\widehat{MAN}=2.\dfrac{\sqrt{5}}{5}.\dfrac{2\sqrt{5}}{5}=\dfrac{4}{5}=0,8\)