Tìm x,y biết:
6x2 + 35y2 = 2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015
Ta thấy \(2015-\left|y-2015\right|=y\)nếu \(y\le0\)
và \(2015-\left|y-2015\right|=2015-y+2015\)nếu \(y>2015\)
Nếu \(y\ge2015\)thì \(y-2015-\left|y-2015\right|=y-y=0\)
\(\Leftrightarrow y=0;1;2;3;4;...;2015\)(vì y là số tự nhiên)
Nếu \(y>2015\)thì:
\(y-2015-\left|y-2015\right|=y-2015-y+2015=y-y=0\)
\(\Leftrightarrow y=2016;2017;.....\)
\(\Rightarrow x=0\)
Từ 2 trường hợp trên , ta có:
\(y=0;1;2;3;4;5;...\)hay \(y\in N\)
\(x=0\)
15 \(\times\) ( 2\(x\) - 16) - (6\(x^2\) + 15\(x\)): 3\(x\) = 20
15 \(\times\) (2\(x\) - 16) - 3\(x\)( 2\(x\) + 5):3\(x\) = 20
30\(x\) - 240 - (2\(x\) + 5) = 20
30\(x\) - 240 - 2\(x\) - 5 = 20
28\(x\) - 245 = 20
28\(x\) = 20 + 245
28\(x\) = 265
\(x\) = 265:28
15(2x-16)-(6\(x^2\)+15x):3x=20
=>30x-240-2x-5=20
=>28x=265
=>x=\(\dfrac{265}{28}\)
Ta thấy:\(2015-|y-2015|=y\)nếu \(y\le0\)
và \(2015-|y-2015|=2015-y+2015\)nếu \(y>2015\)
Nếu \(y\le2015\)thì:
\(y-2015-|y-2015|=y-y=0\)
\(\Leftrightarrow y=0;1;2;3;4;...;2015\)( Vì y là số tự nhiên )
\(\Rightarrow x=0\)( Vì \(2016^0-1=0\))
Nếu \(y>2015\)thì:
\(y-2015-|y-2015|=y-2015-y+2015=y-y=0\)
\(\Leftrightarrow y=2016;2017;...;+\infty\)
\(\Rightarrow x=0\)
Từ cả 2 trường hợp ta có:
\(y=0;1;2;3;4;...;+\infty\)hay \(y=N\)
\(x=0\)