K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

\(A=sin^6a+cos^6a=\left(sin^2a+cos^2a\right)^3-3.sin^2a.cos^2a.\left(sin^2a+cos^2a\right)\)

\(=1-3sin^2a.cos^2a\)

Đặt \(x=sin^2a\) , \(y=cos^2a\) , thì ta có \(x^2+y^2=1\)

Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\) , ta được : 

\(sin^2a.cos^2a\le\frac{\left(sin^2a+cos^2a\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow A=1-3sin^2a.cos^2a\ge1-3.\frac{1}{4}=\frac{1}{4}\)

Đẳng thức xảy ra khi \(sin^2a=cos^2a\Leftrightarrow sina=cosa\Leftrightarrow a=45^o\)

Vậy........................................................................

31 tháng 7 2017

=(sin a+cos a)(sin^2.a-sina.cosa+cos^2a)+(sina+cosa)sina.cosa-cos a

=(sin a+cos a)(1-sina.cosa+sina.cosa)-cosa

=sina+cosa-cosa

=sina

26 tháng 10 2014

\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha\right)+3sin^2\alpha-cos^2\alpha\)

\(=sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha+3sin^2\alpha-cos^2\alpha\)

\(=sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha\right)^2+\left(cos^2\right)^2-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\)

\(=1-2sin^2\alpha.cos^2\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(=1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha-cos^2\alpha\)

\(=1-3sin^2\alpha.\left(1-sin^2\alpha\right)+3sin^2\alpha-\left(1-sin^2\alpha\right)\)

\(=1-3sin^2\alpha-sin^2\alpha+3sin^2\alpha-\left(1-sin^2\alpha\right)\)

\(1-3sin^2\alpha-sin^2\alpha+3sin^2\alpha-1+sin^2\alpha\)

\(=0\)

4 tháng 8 2017

Bạn ơi bài này của lớp 9 chứ có phải của lớp 8 đâu 

AH
Akai Haruma
Giáo viên
21 tháng 2 2019

Bạn xem lại biểu thức A. Biểu thức $A$ sau khi rút gọn thì \(A=\frac{-2\sin ^2a}{3\cos 2a}\) vẫn phụ thuộc vào $a$

------------

Sử dụng công thức: \(\sin (90-a)=\cos a; \cot (90-a)=\tan a\), ta có:

\(B=\tan ^260(\sin ^8a-\cos ^8a)+4\cos 60(\cos ^6a-\sin ^6a)-\cos ^6a(\tan ^2a-1)^3\)

\(=3(\sin ^8a-\cos ^8a)+2(\cos ^6a-\sin ^6a)-\cos ^6a\left(\frac{\sin ^2a}{\cos ^2a}-1\right)^3\)

\(=3(\sin ^8a-\cos ^8a)+2(\cos ^6a-\sin ^6a)-(\sin ^2a-\cos ^2a)^3\)

\(=3(\sin ^2a-\cos ^2a)(\sin ^2a+\cos ^2a)(\sin ^4a+\cos ^4a)+2(\cos ^2a-\sin ^2a)(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^3\)

\(=3(\sin ^2-\cos ^2a)(\sin ^4a+\cos ^4a)-2(\sin ^2a-\cos ^2a)(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^3\)

\(=(\sin ^2a-\cos ^2a)[3(\sin ^4a+\cos ^4a)-2(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^2]\)

\(=(\sin ^2a-\cos ^2a).0=0\). Do đó giá trị của biểu thức không phụ thuộc vào $a$

8 tháng 7 2023

Giải câu a đi ạ