K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

S=2^3+4^3+6^3+....+20^3=2^3×(1^3+2^3+3^3+....+10^3)=8×3025=24200

19 tháng 6 2017

Bài 1:

\(S=2^2+4^2+6^2+...+20^2\)

\(=\left(1\cdot2\right)^2+\left(2\cdot2\right)^2+\left(2\cdot3\right)^2+...+\left(2\cdot10\right)^2\)

\(=1\cdot2^2+2^2\cdot2^2+2^2\cdot3^2+...+2^2\cdot10^2\)

\(=2^2\left(1+2^2+3^2+...+10^2\right)\)

\(=4\cdot385=1540\)

Bài 2:

\(A=2^0+2^1+2^2+...+2^{100}\)

\(A=1+2+2^2+...+2^{100}\)

\(2A=2\left(1+2+2^2+...+2^{100}\right)\)

\(2A=2+2^2+2^3+...+2^{101}\)

\(2A=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)

\(A=2^{101}-1\)

19 tháng 6 2017

Giải:

\(1.\) \(S=2^2+4^2+6^2+....+20^2\)

\(2^2=\left(1.2\right)^2\)

\(4^2=\left(2.2\right)^2\)

\(...\)

Vế dưới \(= \left(1.2\right)^2 + \left(2.2\right)^2 + ...+ \left(9.2\right)^2+ \left(10.2\right)^2\)

\(= 2^2.(1^2 + 2^2 + 3^2 + ...+ 9^2 + 10^2) \)

\(= 4. 385\)

\(= 1540\)

\(2.\)

\( 2A = 2^1 + 2^2 + 2^3 + 2^4 +...+\)\(2^{2011}\)

\(2A - A = ( 2^1 + 2^2 + 2^3+ 2^4 +...+ 2^{2011} ) - ( 1 + 2^2 + 2^3 +...+ 2^{2010} ) \)

\(\Rightarrow A = 2^{2011} - 1\)

20 tháng 8 2016

4.385=1540

1 tháng 8 2018

cmr m=125&,fklmgmni

22 tháng 7 2017

Vì S lớn hơn dãy số trên 2^3 lần(mỗi thừa số lớn hơn 2^3 lần)

Nên S = 3025x2^3=3025x8=24200

Vậy S = 24200

nha

22 tháng 7 2017

biết tổng trên là 3025

24 tháng 7 2016
  • a,  Do \(\left[3x-15\right]^7=0\)

                     =>    \(3x-15=0\) 

                     =>    \(3x=0+15\)

                     =>    \(3x=15\)

                     =>    \(x=15:3\)

                     =>    \(x=5\)

\(\left(3x-5\right)^7=0\)

\(\Rightarrow3x-5=0\)

\(\Rightarrow3x=5\)

\(\Rightarrow x=\frac{5}{3}\)

24 tháng 2 2019

Câu hỏi của Hoàng Thị Diễm Quỳnh - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

24 tháng 2 2019

S= \(2^3\)(\(1^3\)+\(2^3\)+\(3^3\)+...+\(10^3\))

S=8.3025 =24200

           VẬY S=24200

a) Ta có: \(\dfrac{-5}{7}\left(\dfrac{14}{5}-\dfrac{7}{10}\right):\left|-\dfrac{2}{3}\right|-\dfrac{3}{4}\left(\dfrac{8}{9}+\dfrac{16}{3}\right)+\dfrac{10}{3}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)

\(=\dfrac{-5}{7}\cdot\dfrac{3}{2}\cdot\dfrac{21}{10}-\dfrac{3}{4}\cdot\dfrac{56}{3}+\dfrac{10}{3}\cdot\dfrac{8}{15}\)

\(=\dfrac{-9}{4}-14+\dfrac{16}{9}\)

\(=\dfrac{-1621}{126}\)

b) Ta có: \(\dfrac{17}{-26}\cdot\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)

\(=\dfrac{-17}{26}\cdot\dfrac{13}{17}\cdot\dfrac{-3}{2}-\dfrac{20}{3}\cdot\dfrac{3}{20}+\dfrac{2}{3}\cdot\dfrac{-33}{10}\)

\(=\dfrac{3}{4}-1-\dfrac{11}{5}\)

\(=-\dfrac{49}{20}\)