giải hệ phương trình \(\hept{\begin{cases}x^3+4y-y^3-16x=0\\y^2-5x^2=4\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^3+4y=y^3+16x\\1+y^2=5\left(1+x^2\right)\end{cases}}\left(I\right)\)
- Xét x = 0 thì hệ \(\left(I\right)\)trở thành \(\hept{\begin{cases}4y=y^3\\y^2=4\end{cases}}\Leftrightarrow y=\pm2\)
- Xét \(x\ne0\), đặt \(\frac{y}{x}=t\Rightarrow y=xt\). Hệ \(\left(I\right)\)trở thành
\(\hept{\begin{cases}x^3+4xt=x^3t^3+16x\\1+x^2t^2=5\left(1+x^2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x^3\left(t^3-1\right)=4xt-16x\\x^2\left(t^2-5\right)=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^3\left(t^3-1\right)=4x\left(t-4\right)\left(1\right)\\4=x^2\left(t^2-5\right)\left(2\right)\end{cases}}\)
Nhân từng vế của (1) và (2), ta được: \(4x^3\left(t^3-1\right)=4x^3\left(t-4\right)\left(t^2-5\right)\)
\(\Leftrightarrow t^3-1=\left(t-4\right)\left(t^2-5\right)\)(Do \(x\ne0\))
\(\Leftrightarrow t^3-1=t^3-4t^2-5t+20\Leftrightarrow4t^2+5t-21=0\)
\(\Leftrightarrow\left(t+3\right)\left(4t-7\right)=0\Leftrightarrow\orbr{\begin{cases}t=-3\\t=\frac{7}{4}\end{cases}}\)
* Với t = -3, thay vào (2), ta được \(x^2=1\Leftrightarrow x=\pm1\)
+) x = 1 thì y = -3, thử lại (1;-3) là một nghiệm của \(\left(I\right)\)
+) x = -1 thì y = 3, thử lại (-1;3) là một nghiệm của \(\left(I\right)\)
* Với \(t=\frac{7}{4}\), thay vào (2), ta được \(x^2=-\frac{64}{31}\left(L\right)\)
Vậy hệ có 4 nghiệm (x;y) là \(\left(0;2\right),\left(0;-2\right),\left(1;-3\right),\left(-1;3\right)\)
\(\hept{\begin{cases}x^3+4y=y^3+16x\left(1\right)\\1+y^2=5\left(1+x^2\right)\left(2\right)\end{cases}}\)
Từ (2) => \(y^2-5x^2=4\left(3\right)\)
Thế vào (1) được \(x^3+\left(y^2-5x^2\right)\cdot y=y^3+16x\Leftrightarrow x^3-5x^2y-16x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-5xy-16=0\end{cases}}\)
Với x=0 => \(y^2=4\Rightarrow y=\pm2\)
Với \(x^2-5xy-16=0\Leftrightarrow y=\frac{x^2-16}{5x}\left(4\right)\)
Thế vào (3) được \(\left(\frac{x^2-16}{5x}\right)^2-5x^2=4\)
\(\Leftrightarrow x^4-32x^2+256-125x^4=100x^2\Leftrightarrow124x^4+132x^2-256=0\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\left(y=-3\right)\\x=-1\left(y=3\right)\end{cases}}\)
Vậy hệ có 4 nghiệm \(\left(x;y\right)=\left(0;2\right);\left(0;-2\right);\left(1;-3\right);\left(-1;3\right)\)
Đề bài: Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).
Giải:
ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).
\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).
+) TH1: \(x=y+2\): Thay vào (2) ta được:
\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)
\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)
\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)
\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)
\(\Leftrightarrow16y^4+57y^2=0\)
\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).
+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):
\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).
Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).
Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).
Thử lại không có gt nào thỏa mãn.
Vậy...
a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
ĐK: \(x+y\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)
\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)
\(\Leftrightarrow a^3-ab-a+b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được
\(x^2-y=1\Leftrightarrow y=x^2-1\)
\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)
Giải (4)
Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)
do đó (4) không xảy ra
Vậy..........
Hệ pt \(\Leftrightarrow\hept{\begin{cases}x^2+3y=3x-3xy\left(1\right)\\\left(x^2+3y\right)^2+3x^2y-5x^2=0\left(2\right)\end{cases}}\)
Thay (1) vào (2) ta được: \(x^2\left(9y^2-15y+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\Rightarrow y=0\\y=\frac{1}{3}\Rightarrow x=1\\y=\frac{4}{3}\Rightarrow x^2+x+4=0\left(VN\right)\end{cases}}\)
CÁM ƠN BẠN NHIỀU, NHƯNG MÌNH LÀM ĐƯỢC BÀI NÀY RỒI, CÁM ƠN VÀ XIN LỖI BẠN !