K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Gọi thời gian người thứ nhất làm riêng xong công việc là x(giờ)

Gọi thời gian người thứ hai làm riêng xong công việc là y(giờ)

Điều kiện: x; y > 0

Trong 1 giờ người thứ nhất làm được 1/x (công việc)

Trong 1 giờ người thứ hai làm được 1/y (công việc)

Vì hai người làm chung trong 15 giờ được 1/6 công việc nên ta có phương trình:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vì người thứ nhất làm một mình trong 12 giờ và người thứ hai làm một mình trong 20 giờ được 1/5 công việc nên ta có phương trình:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Từ (1) và (2) ta có hệ phương trình:

Vậy người thứ nhất làm riêng xong công việc trong 360 giờ; người thứ hai làm riêng xong công việc trong 120 giờ.

21 tháng 2 2023

Trong 1 giờ hai người cùng làm được : 1 : 12 = \(\dfrac{1}{12}\) (cv)

Trong 4 giờ hai người cùng làm được : \(\dfrac{1}{12}\) x 4 = \(\dfrac{1}{3}\) (cv)

Trong 2 giờ người thứ hai làm được : \(\dfrac{2}{5}\) - \(\dfrac{1}{3}\) = \(\dfrac{1}{15}\) (cv)

Trong 1 giờ người thứ hai làm được : \(\dfrac{1}{15}\) : 2 = \(\dfrac{1}{30}\) (cv)

Trong 1 giờ người thứ nhất làm được : \(\dfrac{1}{12}\) - \(\dfrac{1}{30}\) = \(\dfrac{1}{20}\) (cv)

Nếu làm một mình người thứ nhất hoàn thành công việc sau:

1 : \(\dfrac{1}{20}\) = 20 ( giờ)

Nếu làm một mình thì người thứ hai hoàn thành công việc sau :

1 : \(\dfrac{1}{30}\) = 30 ( giờ)

Kết luận :.......... 

21 tháng 2 2023

Trong 

9 tháng 2 2020

Gọi thời gian người 1 làm riêng là x (giờ) (x>0, x thuộc N)

      thời gian người 2 làm riêng là y (giờ) (y>0, y thuộc N)

Trong 1 giờ người 1 làm được \(\frac{1}{x}\)(công việc)

                  người 2 làm được \(\frac{1}{y}\)(công việc) 

Trong 1 giờ cả 2 người làm được \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\)(công việc) (1)

Nếu người 1 làm 3h, người 2 là 6h thì hoàn thành 25% = \(\frac{1}{4}\)công việc nên ta có: \(\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\)(2)

Từ (1) và (2) ta có hệ phương trình: 

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\end{cases}}\)    Đặt \(\frac{1}{x}=a\)\(;\)\(\frac{1}{y}=b\)

\(\Rightarrow\hept{\begin{cases}a+b=\frac{1}{16}\\3a+6b=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3a+3b=\frac{3}{16}\\3a+6b=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3b=\frac{1}{16}\\a+b=\frac{1}{16}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{48}\\a+\frac{1}{48}=\frac{1}{16}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{48}\\a=\frac{1}{24}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=24\\y=48\end{cases}}\)

Vậy......

26 tháng 2 2021

Đổi: \(1h20p=\dfrac{4}{3}h\)

Gọi \(a,b\left(giờ\right)\) là thời gian làm một mình xong việc của hai người \(\left(a,b>0\right)\)

\(\Rightarrow\) Trong \(1h\) người \(1\) làm đc \(\dfrac{1}{a}\) việc.

\(\Rightarrow\) Trong \(1h\) người \(2\) làm đc \(\dfrac{1}{b}\) việc

Nếu hai người cùng làm một lúc thì sau \(\dfrac{4}{3}h\)  là xong nên ta có phương trình: 

\(\dfrac{4a}{3}+\dfrac{4b}{3}=1\)

Lại có:  Người \(1\) làm trong \(\dfrac{1}{6}h\) và người \(2\) làm trong \(\dfrac{1}{5}\) giờ thì được \(\dfrac{1}{15}\) việc nên ta có phương trình:\(\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\left(2\right)\)

Từ: \(\left(1\right)+\left(2\right)\) ta có hệ:

\(\left\{{}\begin{matrix}\dfrac{4a}{3}+\dfrac{4b}{3}=1\\\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\end{matrix}\right.\)

\(\Leftrightarrow\) Tự giải hệ ta được nghiệm:

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\) \(\left(tm\right)\)

Vậy nếu làm một mình thì người một làm trong \(2h\) và người hai làm trong \(4h\)

24 tháng 11 2018

sao dốt thế

1 tháng 1 2021

dốt vậy

22 tháng 1 2016

Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )

Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)