Chứng minh tích của hai số nguyên liên tiếp luôn chia hết cho 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số liên tiếp chia n dư 1,2,3,..,n-1,n
Dựa vào đi-dép-lê, trong n số liên tiếp sẽ có chắc chắn 1 số chia hết cho n
-> tích của n số nguyên liên tiếp luôn chia hết cho n
-> đpcm
a,
Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:
a + a + 1 + a + 2 = 3a + 3
Mà 3a \(⋮3;3⋮3\)
=> 3a + 3 \(⋮3\)
Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3
b,
Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư
a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2
Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2
c,
Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:
a[a + 1]
*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2
* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2
Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2
d,
Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:
a[a+1][a+2]
* cm a[a+1][a+2] chia hết cho 2
** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2
** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2
Vậy a[a+1][a+2] chia hết cho 2
* cm a[a+1][a+2] chia hết cho 3
Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2
** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3
** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3
** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3
Vậy a[a+1][a+2] chia hết cho 3
Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3
e,
2 + 22 + 23 + 24 + ... + 260
= 2[1 + 2 + 22 + 23 + 24 + ... + 260] \(⋮2\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]
= 14 + 24.14 +... + 256.14
= 7 . 2[1 + 24 + ... + 256] \(⋮7\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24]
= 30 + 25.30 + ... + 255.30
= 5.6 + 25.5.6 + ... + 255.5.6
= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24]
= 30 + 25.30 + ... + 255.30
= 15.2 + 25.15.2 + ... + 255.15.2
= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)
Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15
g,
102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]
= 999.....9999 [2004 chữ số 9]
Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]
=> 102005 - 1 chia hết cho 9
Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]
=> 102005 - 1 chia hết cho 3
Vậy 102005 - 1 chia hết cho 3 và 9
h,
Ta có:
102005 + 2 = 102005 - 1 + 3
Mà 102005 - 1 chia hết cho 3 [chứng minh trên]
Lại có: 3 chia hết cho 3
=> 102005 + 2 chia hết cho 3
Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:
1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9
Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]
a) 3 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right)\)
Ta có \(\Rightarrow n\left(n+1\right)\left(n+2\right)\) trong 3 số sẽ có 1 số chia hết cho 3
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\Rightarrow dpcm\)
b) 5 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right);\left(n+3\right);\left(n+4\right)\)
mà trong 5 số này có số chia hết cho 2;4;3;5 và 2.4=8
⇒ Tích 5 số này chia hết cho 3,5,8 \(\left[UCLN\left(3;5;8\right)=1\right]\)
⇒ Tích 5 số này chia hết cho tích của 3,5,8
mà \(3.5.8=120\)
\(\Rightarrow dpcm\)
c) 3 số chẵn liên tiếp là \(2n;2n+2;2n+4\)
Ta có \(2n\left(2n+2\right)\left(2n+4\right)\)
\(=2.2.2n\left(n+1\right)\left(n+2\right)\)
\(=8n\left(n+1\right)\left(n+2\right)⋮8\left(1\right)\)
Ta lại có \(\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)⋮3\\n\left(n+1\right)⋮2\end{matrix}\right.\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow8n\left(n+1\right)\left(n+2\right)⋮48\)
\(\Rightarrow dpcm\)
tui lam cau b nhe
gọi chẵn 1 là a,chẵn 2 là b
vì a,b chẵn ,liền nhau=>a chia hết cho 4,b ko chia hết cho 4 hoặc b chia hết cho 4,a ko chia hết cho 4
=>a+b ko chia hết cho 4
Một số chẵn có dạng: 2k
=> tích 2 số chắn liên tiếp là:2kx(2k+2)
=4xkxk+4xk
=4xk(k+1)chia hết cho 4
Mà kx(k+1) là tích 2 số tự nhiên liên tiếp
=>kx(k+1) chia hết cho 2
=>4xkx(k+1) chia hết cho 2x4
=>4xkx(k+1) chia hết cho 8
Vậy tích 2 số chẵn liên tiếp luôn chia hết cho 8
giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2