cho a,b,c > 0 và a+b+c =3. chứng minh \(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c la cac so duong a+b+c=3
Chung minh:\(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)
Áp dụng bđt AM-GM:
\(a^5+\frac{1}{a}\ge2\sqrt{a^5.\frac{1}{a}}=2a^2\)
\(b^5+\frac{1}{b}\ge2\sqrt{b^5.\frac{1}{b}}=2b^2\)
\(c^5+\frac{1}{c}\ge2\sqrt{c^5.\frac{1}{c}}=2c^2\)
\(\Rightarrow VT\ge2\left(a^2+b^2+c^2\right)\ge\frac{2}{3}\left(a+b+c\right)^2=6\)
\("="\Leftrightarrow a=b=c=1\)
Cho a>1,b>1,c>1. Chứng minh : \(\frac{a}{\sqrt{a-1}}+\frac{b}{\sqrt{b-1}}+\frac{c}{\sqrt{c-1}}\ge6\)
\(VT=\frac{a}{\sqrt{a-1}}+\frac{b}{\sqrt{b-1}}+\frac{c}{\sqrt{c-1}}=\frac{a-1+1}{\sqrt{a-1}}+\frac{b-1+1}{\sqrt{b-1}}+\frac{c-1+1}{\sqrt{c-1}}\)
\(VT\ge\frac{2\sqrt{a-1}}{\sqrt{a-1}}+\frac{2\sqrt{b-1}}{\sqrt{b-1}}+\frac{2\sqrt{c-1}}{\sqrt{c-1}}=6\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=2\)
Áp dụng BĐT cosi ta có
\(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\); \(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\); \(\frac{1}{c^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{3}{c^2d}\)
\(\frac{1}{d^3}+\frac{1}{d^3}+\frac{1}{a^3}\ge\frac{3}{d^2a}\)
Cộng các BĐt trên ta có
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\)(1)
Áp dụng BĐT buniacoxki ta có
\(\left(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\right)\left(\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\right)\ge \left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)^2\)
Kết hợp với (1) ta được ĐPCM
Dấu bằng xảy ra khi a=b=c
Ta có:\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
Để \(a^2+b^2+c^2=\frac{5}{3}\) thì \(ab+bc+ca=0\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ca}{abc}+\frac{ab}{abc}=\frac{bc+ca+ab}{abc}\)
Thay ab + bc + ca = 0 vào,ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ca+ab}{abc}=\frac{0}{abc}=0\)
Mà a,b,c > 0 nên abc > 0 do đó \(\frac{1}{abc}>0\) hay \(\frac{1}{abc}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{abc}\)
Suy ra đpcm.
bài 1. ta có
\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng
Bài 2
ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)
Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)
\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)
Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad
\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0
\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0
\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)
Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)
=> đpcm tự kết luận
Ta có:
\(\frac{3}{a}+\frac{3}{b}=3\left(\frac{1}{a}+\frac{1}{b}\right)\ge3.\frac{4}{a+b}=4.\frac{3}{a+b}\)
\(\frac{2}{b}+\frac{2}{c}\ge4.\frac{2}{b+c}\)
\(\frac{1}{c}+\frac{1}{a}\ge4.\frac{1}{a+c}\)
=> \(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Dấu "=" xảy ra <=> a = b = c
Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)
Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)
\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)
\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
áp dụng Cô-si ta có:
\(a^5+\frac{1}{a}+1+1\ge4\sqrt[4]{a^5.\frac{1}{a}.1.1}=4a\)
\(b^5+\frac{1}{b}+1+1\ge4\sqrt[4]{b^5.\frac{1}{b}.1.1}=4b\)
\(c^5+\frac{1}{c}+1+1\ge4\sqrt[4]{c^5.\frac{1}{c}.1.1}=4c\)
\(\Rightarrow a^5+b^5+c^5+1+1+1+1+1+1\ge4a+4b+4c\)
\(\Leftrightarrow a^5+b^5+c^5\ge4\left(a+b+c\right)-6=4.3-6=6\)
Dấu = xảy ra khi a=b=c=1
Vẫn áp dụng cô si nhưng lần này sẽ khác cách của Thành:
Áp dụng BĐT Côsi,ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Suy ra \(VT\ge a^5+b^5+c^5+3\sqrt[3]{\frac{1}{abc}}\)
Suy ra \(VT+1+1\ge a^5+b^5+c^5+1+1+3\sqrt[3]{\frac{1}{abc}}\) (1)
Áp dụng Côsi,ta có: \(a^5+b^5+c^5+1+1\ge5\sqrt[5]{1a^5b^5c^51}=5abc\)(2)
Từ (1) và (2) suy ra \(VT+1+1\ge5abc+3\sqrt[3]{\frac{1}{abc}}\)
\(VT\ge5abc+3\sqrt[3]{\frac{1}{abc}}-2\).Ta cần chứng minh \(5abc+3\sqrt[3]{\frac{1}{abc}}-2\ge6\Leftrightarrow5abc+3\sqrt[3]{\frac{1}{abc}}\ge8\) (3)
Thật vậy ta có: \(\sqrt[3]{abc}\le\frac{a+b+c}{3}\Rightarrow abc\ge\frac{a+b+c}{3}\).Áp dụng vào,ta có:
\(abc\ge\frac{a+b+c}{3}=1\) (do a + b + c = 3).
Thay vào (3),ta có:\(5abc+3\sqrt[3]{\frac{1}{abc}}\ge8\) suy ra \(5abc+3\sqrt[3]{\frac{1}{abc}}-2\ge6\) suy ra đpcm