cho Pà SNT>3.CM P và P+8 là SNT và P+100 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3 nè : ta có a=42q+r=2*3*7q+r(q,r thuộc N,0<r<42 Vì a là SNT nên r ko chia hết cho 2,3,7 tìm các hợp số <42 loại chia hết cho 3,7 còn 25 r=25
Ví p là SNT > 3
=> p có dạng 3q + 1 hoặc 3p + 2
+ Xét p = 3p + 2
Ta có :
p + 4 = 3p + 2 + 4 = 3 p + 6 = 3 ( p + 2 )
Vì 3 ( p + 2 ) chia hết cho 3 nên p + 4 là hợp số
=> loại p = 3p + 2
Vậy p = 3q + 1
Ta có :
p + 8 = 3q + 1 + 8 = 3q + 9 = 3 ( q + 3 )
Ví 3 ( q + 3 ) chia hết cho 3
Mà p + 8 > 3
=> p + 8 là hợp số
Vậy p + 8 là hợp số
p>3 => p có dạng 3k+1; 3k+2
p = 3k+1 => 2p+7 = 2(3k+1) +7= 6k+2+7 = 6k+9 chia hết cho 3 (thỏa mãn)
p = 3k+2=> 2p+7 = 2(3k+2)+ 7 = 6k+4+7= 6k+11 (loại)
Vậy 2p+7 là hợp số
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $5$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ là số tự nhiên; $k\geq 2$.
Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$ và $2p+1=3(2k+1)>3$ nên $2p+1$ không phải số nguyên tố (trái giả thiết).
Do đó $p=3k+2$.
Khi đó:
$p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+45=9(k^2+3k+5)\vdots 9$ nên $p(p+5)+31$ là hợp số (đpcm)