cho 3 số không âm x,y,z sao cho x+y+z=1. tìm GTLN của:
xy+yz+zx-3xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ap dung bdt co si ta co:
\(xy+yz+xz>=3\sqrt[3]{\left(xyz\right)^2}\)
=>\(100>3\sqrt[3]{x^2y^2z^2}\)
=>\(\frac{100}{3}>=\sqrt[3]{\left(xyz\right)^2}\)
=>\(\sqrt{\frac{100^3}{3^3}}>=xyz\)
=>\(\frac{1000}{3\sqrt{3}}>=xyz\)
=>\(Amax=\frac{1000}{3\sqrt{3}}\)
xay ra dau bang khi va chi khi x=y=z\(\frac{10}{\sqrt{3}}\)
\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)
\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)
\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)
với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1
Khi đó P=1.1+1.1+1.1=3
Áp dụng bất đẳng thức AM - GM và kết hợp với giả thiết x + y + z = 3 ta có:
\(B=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}+\sqrt{\dfrac{yz}{yz+x\left(x+y+z\right)}}+\sqrt{\dfrac{zx}{zx+y\left(x+y+z\right)}}\)
\(B=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\dfrac{yz}{\left(y+x\right)\left(z+x\right)}}+\sqrt{\dfrac{zx}{\left(z+y\right)\left(z+x\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}+\dfrac{y}{y+x}+\dfrac{z}{z+x}+\dfrac{z}{z+y}+\dfrac{x}{z+x}\right)\)
\(B\le\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = z = 1.
Vậy...
Bài làm:
Ta có: \(x+y+z=8\Leftrightarrow\left(x+y+z\right)^2=64\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=64\)
Mà \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
Thay vào ta có: \(64\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow xy+yz+zx\le\frac{64}{3}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{8}{3}\)
Vậy Max(B) = 64/3 khi x = y = z = 8/3