Một tam giác có số đo ba góc lần lượt tỉ lệ với 3;5;7.Tính số đo các góc tam giác đó
Mong các bạn giải giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt số đo các góc lần lượt là: a, b, c (độ)
Ta có: a + b + c = 180 độ
Áp dụng tính chất dãy tỉ số = nhau, ta có:
\(\dfrac{a}{5}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a+b+c}{5+3+2}=\dfrac{180}{10}=18\)
\(\Rightarrow\dfrac{a}{5}=18\Rightarrow a=90\)
\(\Rightarrow\dfrac{b}{3}=18\Rightarrow b=54\)
\(\Rightarrow\dfrac{c}{2}=18\Rightarrow c=36\)
Gọi số đo của các góc A, B, C lần lượt là a;b;c (a;b;c > 0)
Vỉ các góc đó lần lượt tỉ lệ với các số 2;3;5 nên
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 180o
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{180^o}{10}=18^o\)
\(\Rightarrow\hept{\begin{cases}a=18^o.2=36^o\\b=18^o.3=54^o\\c=18^o.5=90^o\end{cases}}\)
Vậy góc A = 36o; góc B = 54o; góc C = 90o
Gọi ba góc của một tam giác lần lượt là x , y , z lần lượt tỉ lệ với 1 ; 2 ; 3
Theo đề bài ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) và x + y + z = 180 ( vì tổng 3 góc trong một tam giác là 180 )
Theo t/c của DTSBN ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{180}{6}=30\)
\(\frac{x}{1}=30\Rightarrow x=30.1=30\)
\(\frac{y}{2}=30\Rightarrow y=30.2=60\)
\(\frac{z}{3}=30\Rightarrow z=30.3=90\)
mình ghi rõ lời giải và cách làm k nah
theo bài ra ta có góc A=180/10*3=54độ góc B=180/10*5 =90 độ góc C=180-90-54=36 độ suy ra tam giác ABC cân tại B
VÌ MB và NB LÀ tiếp tuyến suy ra tam giác BMN là tam giác cân suy ra góc BNM=BMN=180-GOCSB=[180-90]/2=45 độ
tương tự đối với tam giác CNP có gócPNC=NPC=180-gócC=[180-36]/2=72 độ
do đó góc MNP=180-MNB-PNC=180-45-72=63 độ
so phan bang nhau la; 1+2+3=6
vay SDcung BC la; 360:6 =60o
CA la; 60.2=120 ; AB la; 60.3 =180
vay; 1802 > 602 + 1202
\(\text{Gọi x;y;z lần lượt là số đo góc 1;góc 2;góc 3:}\)
(đk:x;y;z>0;đơn vị:độ)
\(\text{Ta có:}\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\text{ và }x+y+z=180^0\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}=\frac{x+y+z}{4+6+8}=\frac{180}{18}=10\)
\(\Rightarrow x=10.4=40^0\)
\(y=10.6=60^0\)
\(z=10.8=80^0\)
\(\text{Vậy số đo góc x là:}40^0\)
\(\text{Vậy số đo góc y là:}60^0\)
\(\text{Vậy số đo góc z là:}80^0\)
gọi chiều dái các cạnh lần lượt là a;b;c
Ta có c là cạnh huyền a;b là các cạnh góc vuông
Theo định lí Py-ta-go ta có: c2=a2+b2
mak c=102
=> a2+b2=1022=10404
Theo đề a/8=b/15
Áp dụng tính chất dãy tỉ số = nhau:
=> \(\frac{a^2}{8^2}=\frac{b^2}{15^2}=\frac{a^2+b^2}{8^2+15^2}=\frac{10404}{289}=36\)
a=36.8=288cm
b=36.15=540cm
gọi a,b,c lfn lượt là số đo các góc tỉ lệ với 3;5;7.
=>\(\frac{a}{3}\)=\(\frac{b}{5}\)=\(\frac{c}{7}\)
Theo dãy tỉ số bằng nhau ta có: \(\frac{a}{3}\)=\(\frac{b}{5}\)=\(\frac{c}{7}\)=\(\frac{a+b+c}{3+5+7}\)=\(\frac{180}{15}\)=12
=> \(\frac{a}{3}\)=12 => a=36
\(\frac{b}{5}\)=12 =>b=60
\(\frac{c}{7}\)=12 =>c=84
Vậy số đo các góc của tam giác là: 36 độ,60 độ,84 độ
**k nha!!
36,60,84