K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2022

\((2x+1)^{5}=(2x+1)^{2022}\)

\((2x+1)^{2022}-(2x+1)^{5}=0\)

\((2x+1)^{5}[(2x+1)^{2017}-1]=0\)

\(@TH1: (2x+1)^{5}=0=>2x+1=0=>x=\dfrac{-1}{2}\)

\(@TH2: (2x+1)^{2017}-1=0=>(2x+1)^{2017}=1=>2x+1=1=>2x=0=>x=0\)

DT
14 tháng 7 2022

\(\left(2x+1\right)^5=\left(2x+1\right)^{2022}\\ =>\left(2x+1\right)^{2022}-\left(2x+1\right)^5=0\\ =>\left(2x+1\right)^5\left[\left(2x+1\right)^{2017}-1\right]=0=>\left[{}\begin{matrix}\left(2x+1\right)^5=0\\\left(2x+1\right)^{2017}-1=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=0\end{matrix}\right.\)

29 tháng 7 2023

\(a,2^x+2^{x+3}=144\\ 2^x.\left(1+2^3\right)=144\\ 2^x.9=144\\ 2^x=144:9\\ 2^x=16=2^4\\ vậy:x=4\)

29 tháng 7 2023

\(b,\left(x-5\right)^{2022}=\left(x-5\right)^{2021}\\ Vì:\left[{}\begin{matrix}0^{2022}=0^{2021}\\1^{2022}=1^{2021}\end{matrix}\right.\\ Vậy:\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)

17 tháng 12 2022

(2x-1).5\(^{2021}\)=3.5\(^{2022}\)

Ta có: (2x-1)=3.(5\(^{2022}\):5\(^{2021}\))

(2x-1)=3.5

(2x-1)=15

2x-1=15

2x=15-1

2x=14

x=14:2

x=7

TC
Thầy Cao Đô
Giáo viên VIP
17 tháng 12 2022

2x - 1 = 15 thì 2x = 16 em nhé

1 tháng 10 2021

\(a,\Leftrightarrow\left|x+\dfrac{2}{5}\right|=\dfrac{7}{4}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{5}=\dfrac{7}{4}\left(x\ge-\dfrac{2}{5}\right)\\x+\dfrac{2}{5}=-\dfrac{7}{4}\left(x< -\dfrac{2}{5}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{27}{20}\left(tm\right)\\x=-\dfrac{43}{20}\left(tm\right)\end{matrix}\right.\)

\(b,\Leftrightarrow\left|x-\dfrac{13}{10}\right|=\dfrac{13}{10}\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{13}{10}=\dfrac{13}{10}\left(x\ge\dfrac{13}{10}\right)\\x-\dfrac{13}{10}=-\dfrac{13}{10}\left(x< \dfrac{13}{10}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{5}\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

\(c,\Leftrightarrow\left|\dfrac{3}{4}-\dfrac{1}{2}x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}-\dfrac{1}{2}x=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\\\dfrac{1}{2}x-\dfrac{3}{4}=\dfrac{1}{2}\left(x>\dfrac{3}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{5}{2}\left(tm\right)\end{matrix}\right.\)

\(d,\Leftrightarrow\left|5-2x\right|=4\Leftrightarrow\left[{}\begin{matrix}5-2x=4\left(x\le\dfrac{5}{2}\right)\\2x-5=4\left(x>\dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{9}{2}\left(tm\right)\end{matrix}\right.\)

\(đ,\Leftrightarrow\left\{{}\begin{matrix}x-3,5=0\\x-1,3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\x=1,3\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)

\(e,\Leftrightarrow\left\{{}\begin{matrix}x-2021=0\\x-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\x=2022\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)

\(f,\Leftrightarrow\left|x\right|=\dfrac{1}{3}-x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}-x\left(x\ge0\right)\\x=x-\dfrac{1}{3}\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\left(tm\right)\\0x=-\dfrac{1}{3}\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)

\(g,\Leftrightarrow\left[{}\begin{matrix}x-2=x\left(x\ge2\right)\\2-x=x\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=2\left(vô.lí\right)\\x=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\)

9 tháng 5 2022

`2x-15=-25`

`2x=-10`

`x=-5`

___________

`3/5<x/10<4/5`

`3/5=(3xx10)/(5xx10)=30/50`

`x/10=(5x)/(10xx5)=(5x)/50`

`4/5=(4xx10)/(5xx10)=40/50`

`=>30/50<(5x)/50<40/50`

`=>30<5x<40`

`=>x=7`

16 tháng 12 2023

olm sẽ hướng dẫn em làm bài này như sau:

Bước 1: em giải phương trình tìm; \(x\); y

Bước 2:  thay\(x;y\) vào P

(\(x-1\))2022 + |y + 1| = 0

Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0  ∀ y

⇒ (\(x\) - 1)2022  + |y + 1| = 0

⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1) 

Thay (1) vào P ta có:

12023.(-1)2022 : )(2.1- 1)2022 +  2023

=  1 + 2023

= 2024

16 tháng 12 2023

a+b+c=12

25 tháng 9 2018

a,\(\left(x-1\right)^2=4=2^2=\left(-2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)

b,\(\left(2x+1\right)^3=27=3^3\)

\(\Rightarrow2x+1=3\Rightarrow x=1\)

c,\(\left(2x-1\right)^5=x^5\Rightarrow2x-1=x\Rightarrow x=1\)

25 tháng 9 2018

\(a,\left(x-1\right)^2=4\)

\(\Rightarrow x-1=2\)

\(\Rightarrow x=3\)

\(b,\left(2x+1\right)^3=27\)

\(\Rightarrow2x+1=3\)

\(\Rightarrow x=1\)

\(c,\left(2x-1\right)^5=x^5\)

\(\Rightarrow2x-1=x\)

\(\Rightarrow2x-x-1=0\)

\(\Rightarrow x=1\)

Học tốt!

15 tháng 5 2022

Cho `M(x)=0`

`=>x^2+2x+2022=0`

`=>x^2+2x+1+2021=0`

`=>(x+1)^2=-2021` (Vô lí vì `(x+1)^2 >= 0` mà `-2021 < 0`)

Vậy đa thức `M(x)` không có nghiệm

15 tháng 5 2022

Ta có M(x) = x2 + 2x + 2022

= x2 + x + x + 1 + 2021

= x(x + 1) + (x + 1) + 2021

= (x+1) . (x+1) + 2021

= (x+1)2 + 2021

Ta có ( x + 1)2 \(\ge\)0

2021 > 0

=>  (x+1)2 + 2021 > 0

=>  x2 + 2x + 2022> 0

Vậy đa thức trên không có nghiệm

`@` `\text {Ans}`

`\downarrow`

\(\left(\dfrac{1}{5}\right)^{2x-1}=\dfrac{1}{125}\)

`=>`\(\left(\dfrac{1}{5}\right)^{2x-1}=\left(\dfrac{1}{5}\right)^3\)

`=>`\(2x-1=3\)

`=> 2x = 3 + 1`

`=> 2x = 4`

`=> x = 4 \div 2`

`=> x = 2`

Vậy, `x = 2.`

`@` `\text {Kaizuu lv uuu}`

16 tháng 7 2023

P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025

Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.

Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.

Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.

24 tháng 1 2019

\(\left(-3x+2\right)-\left(5-3x\right)=-3\)

\(\Rightarrow-3x+2-5+3x=-3\)

\(\Rightarrow-3x+3x=-3+5-2\)

\(\Rightarrow0x=0\Rightarrow x\in Z\)

\(3+x-\left(3x-1\right)=6-2x\)

\(\Rightarrow3+x-3x+1=6-2x\)

\(\Rightarrow x-3x+2x=6-1-3\)

\(\Rightarrow0x=2\left(loại\right)\)

\(\left(x-5\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{4}{3}\end{cases}}}\)

\(7x\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}7x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)

\(\left(3x-1\right)2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}}\)

24 tháng 1 2019

khó hiểu quá

bạn ghi bằng số luôn đừng ghi phần