K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2021

\(A=\frac{xyz}{x+y}\Rightarrow\frac{1}{A}=\frac{x+y}{xyz}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

 \(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{yz+xz}=\frac{4}{z\left(x+y\right)}\)(1)

Lại có \(z\left(x+y\right)\le\frac{\left(x+y+z\right)^2}{4}=\frac{9}{4}\)(theo AM-GM) => \(\frac{4}{z\left(x+y\right)}\ge\frac{16}{9}\)(2)

Từ (1) và (2) => \(\frac{x+y}{xyz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{16}{9}\)=> \(\frac{x+y}{xyz}\ge\frac{16}{9}\)hay \(\frac{1}{A}\ge\frac{16}{9}\)

=> A ≤ 9/16. Đẳng thức xảy ra <=> z = 3/2 ; x = y = 3/4

Vậy MaxA = 9/16 <=> x = y = 3/4 ; z = 3/2

10 tháng 5 2021

\(9=3^2=\left(x+y+z\right)^2\ge4\left(x+y\right)z\)

\(\rightarrow9.\frac{x+y}{xyz}\ge4.\frac{\left(x+y\right)^2}{xy}\ge4.\frac{4xy}{xy}=16\)

\(\rightarrow\frac{x+y}{xyz}\ge\frac{16}{9}\rightarrow\frac{xyz}{x+y}\le\frac{9}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{3}{4};z=\frac{3}{2}\)

10 tháng 2 2018

Áp dụng bđt : a^2+b^2+c^2 >= ab+bc+ca thì :

P = x^4+y^4+z^4/xyz >= x^2y^2+y^2z^2+z^2x^2/xyz

   >= xy.yz+yz.zx+zx.xy/xyz

     = xyz.(x+y+z)/xyz

     = x+y+z = -3

Dấu "=" xảy ra <=> x=y=z=-1 (T/m)

Vậy ...........

Tk mk nha

(x+y+z)^2=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+xz+yz=0

=>xy/xyz+xz/xyz+yz/xyz=0

=>1/x+1/y+1/z=0

15 tháng 2 2018

áp dụng bdt cô si dạng " Rei' ta có

\(x+y+1\le3\sqrt[3]{xy}\)

từ đề bài ta suy ra  \(xy=\frac{1}{z}\Leftrightarrow\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)

suy ra   \(3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{\sqrt[3]{z}}\)

áp dụng cho các BDT còn lại

\(3\sqrt[3]{yz}=\frac{3}{\sqrt[3]{x}};3\sqrt[3]{xz}=\frac{3}{\sqrt[3]{y}}\)

suy ra  \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{y}}{3}+\frac{\sqrt[3]{x}}{3}\) Nhân ngược lên 

vậy 

\(Q\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)

áp dụng BDT cô si dạng "Shinra" ta có  , đặt tử số = S

\(S=\sqrt[3]{z}+\sqrt[3]{y}+\sqrt[3]{x}\ge3\sqrt[3]{\sqrt[3]{xyz}}\)

có xyz=1 vậy    \(3\sqrt[3]{\sqrt[3]{xyz}}=3\)

 suy ra \(S\ge3\) ( ngược dấu loại )

cách 2 áp dụng BDT cosi dạng đặc biệt " Gedou rinne Tensei " ta được

lưu ý " Gedou Rinne Tensei" chỉ dùng lúc nguy cấp + tán gái + thể hiện  và chỉ lừa được những thằng ngu 

không nên dùng trc mặt thầy cô giáo :) .

\(\sqrt[3]{x.1.1}\le\frac{\left(x+2\right)}{3}\)

tương tự vs các BDt còn lại và đặt tử số = S ta được

\(S\le\frac{\left(x+2+y+2+z+2\right)}{3}=\frac{\left(x+y+z+6\right)}{3}=3\) 

thay \(S\le3\) vào biểu thức ta được

\(Q\le\frac{3}{3}=1\)

vây Max Q là 1 dấu = xảy ra khi x=y=z=1

16 tháng 2 2018

Đệch, nói luôn côsi 3 số cho r

Cái này ae nào ko hiểu msg tui, tui dùng điểm rơi giải đc r, dễ hiểu hơn