Tinh \(\left(a-b\right)^2\)biet \(a+b=8\)va \(ab=10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo đề ra ta có : a2+b2=2(8+ab)
⇔a2+b2-2ab=16
⇔(a-b)2=16
⇔a-b=4
Ta có P=a2(a+1)−b2(b−1)+ab−3ab(a−b+1)+64
⇔P=a3+a2-b3+b2+ab-3a2b+3ab2-3ab+64
⇔P=(a3-b3)+(a2-2ab+b2)-(3a2b-3ab2)+64
⇔P=(a-b)(a2+ab+b2)+(a-b)2-3ab(a-b)+64
⇔P=(a-b)(a2+ab+b2+1-3ab)+64
⇔P=4[(a-b)2+1]+64
⇔P=4(16+1)+64= 132
⇔P= 132
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(a-b\right)^2=a^2-2ab+b^2=a^2+2ab+b^2-4ab=\left(a+b\right)^2-4ab\)
= 52-4.2=25-8=17
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Thay vào ta có : \(8^2-4\times10\)
\(=64-40\)
\(=24\)
Vậy khi \(a+b=8,ab=10\) thì \(\left(a-b\right)^2=24\)
Ta có (a-b)^2=a^2-2ab+b^2
= (a^2+2ab+b^2)-2ab
=(a+b)^2-2ab (1)
Thay a+b=8 va ab=10 vao (1)
=> (a-b)^2=8^2-2*10
=64-20
=44