phân tích đa thức sau thành phân tử:
A=(a+1).(a+3).(a+5).(a+7)+15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)
`a, a^3 - a^2b + a - b`
`= a^2(a-b) + (a-b)`
`= (a^2+1)(a-b)`
`b, x^2 - y^2 + 2y - 1`
`= x^2 - (y-1)^2`
`= (x-y+1)(x+y-1)`
Đặt \(M=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(M=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(M=\left(a^2+7a+a+7\right)\left(a^2+5a+3a+15\right)+15\)
\(M=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(p=a^2+8a+11\)
\(\Rightarrow M=\left(p-4\right)\left(p+4\right)+15\)
\(\Rightarrow M=p^2-16+15\)
\(\Rightarrow M=p^2-1\)
\(\Rightarrow M=\left(p-1\right)\left(p+1\right)\)
Thay \(p=a^2+8a+11\)vào M, ta có :
\(M=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(M=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
A=( a +1)(a+3)(a+5)(a+7)+15
=(a+1)(a+7)(a+3)(a+5)+15
=(a2+8a+7)(a2+8a+15)+15
Đặt y=a2+8a+7 ta được :
y(y+8)+15=y2 + 8y +15
=y2 +3y+5y+15
=y(y+3) +5(y+3)
=(y+3)(y+5)
thay y=a2+8a+7 ta được
(a2+8a+7+3)(a2+8a+7+5)
=(a2+8a+10)(a2-2a-6a+12)
=(a2+8a+10)[a(a-2)-6(a-2)]
=(a2+8a+10)(a-2)(a-6)
Câu 1:
a: Sửa đề: \(A=\left(x+2\right)\left(x^2-2x+4\right)+x\left(1-x\right)\left(1+x\right)\)
\(=x^3+2^3+x\left(1-x^2\right)\)
\(=x^3+8+x-x^3\)
=x+8
b: Khi x=-4 thì A=-4+8=4
c: Đặt A=-2
=>x+8=-2
=>x=-10
Câu 2:
a: \(x^3-3x^2=x^2\cdot x-x^2\cdot3=x^2\left(x-3\right)\)
b: \(5x^3+10x^2+5x\)
\(=5x\cdot x^2+5x\cdot2x+5x\cdot1\)
\(=5x\left(x^2+2x+1\right)\)
\(=5x\left(x+1\right)^2\)
A=(a+1)(a+3)(a+5)(a+7)+15
A=[(a+1)(a+7)][(a+5)(a+3)]+15
A=(a2+8a+7)(a2+8a+15)+15
Đặt a2+8a = v
Ta có :
A=(v+7)(v+15)+15
A= v2+22v+105+15
A= v2+22v+ 120
A= v2+10v+12v+120
A=( v2+10v)+(12v+120)
A=[v(v+10)]+[12(v+10)]
A=(v+10)(v+12) (1)
Thay a2+8a = v vào (1)
A=(a2+8a+10)(a2+8a+12)
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
\(A=\left(a+1\right).\left(a+3\right).\left(a+17\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
\(=\left(a^2+8a+11-4\right)\left(a^2+8a+11+4\right)+15\)
\(=\left(a^2+8a+11\right)^2-4^2+15\)
\(=\left(a^2+8a+11\right)^2-1\)
\(=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)