Cho tam giác ABC qua a Vẽ đường thẳng xy song song BC biết góc B bằng 80 độ C = 40°. Tính các góc BAx , CAy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có A+B+C=180
=>BAC=180-(B+C)=180-(80+40)=60
Có AD//BC => CAD=C=40 do ở vị trí so le trong
vậy BAC=60 và CAD=40
\(\widehat{xAB}+\widehat{BAC}+\widehat{yBC}=180^o\) (1)
xy//BC nên
\(\widehat{xAB}=\widehat{B}\) (góc sole trong) (2)
\(\widehat{yBC}=\widehat{C}\) (góc so le trong) (3)
Từ (1) (2) (3)
\(\Rightarrow\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)
Kéo dài tia Ax // BC
Do Ax//BC => Góc xAB + Góc ABC = 180 độ => Góc xAB = 110 độ
Mà góc BAC = 80 độ => Góc xAC = 30 độ
Lại có Ax // BC =>Góc ACB = Góc xAC = 30 độ
a) Ta có: xy//BC
\(\Rightarrow\widehat{A_1}=\widehat{B}\);\(\widehat{A_2}=\widehat{C}\)
b) Vì \(\widehat{A_1}=\widehat{B}\);\(\widehat{A_2}=\widehat{C}\)
=>\(\widehat{A}+\widehat{B}+\widehat{C}=\widehat{A}+\widehat{A_1}+\widehat{A_2}=180^o\)
Chúc bạn học tốt!
Hình bạn Nguyễn Gia Triệu vẽ rồi nha bạn Trần Thị Thu Huyền
a, Các cặp góc bằng nhau:
\(\widehat{A_1}\)và \(\widehat{B}\); \(\widehat{A_2}\)và \(_{\widehat{C}}\)
b, Ta có:
\(\widehat{A_1=\widehat{B};\widehat{A_2}=\widehat{C}}\)
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=\widehat{A}+\widehat{A_1+\widehat{A_2}=180^o}\)( theo định lý Py-ta-go về tổng ba cạnh tam giác )
Ta có : góc A + góc B +góc C = 180 ( Định lý tổng 3 góc của 1 tam giác )
80 + 50 + góc C = 180
=> góc C = 180 -80 -50 = 50
Ta có: góc BAC + góc CAx = 180 ( kề bù )
80 + góc Cax = 180
=> Góc Cax = 100
Vì AI là tia phân giác của Góc CAx => góc CAy = góc yAx
=> góc CAy = Góc CAx / 2 =100/2 = 50
Ta có ( góc yAC + góc CAB ) + góc BAC = 180 ( ở vị trí trong cùng phía )
Suy ra Ay // BC ( đpcm)