Tìm a thuộc N sao cho 5a + 6 là bội của 3a + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để n + 1 là ước của 2n + 7 thì :
2n + 7 ⋮ n + 1
2n + 2 + 5 ⋮ n + 1
2( n + 1 ) + 5 ⋮ n + 1
Vì 2( n +1 ) ⋮ n + 1
=> 5 ⋮ n + 1
=> n + 1 thuộc Ư(5) = { 1; 5; -1; -5 }
=> n thuộc { 0; 4; -2; -6 }
Vậy........
\(\text{n + 1 là ước của 2n + 7 nên }\left(2n+7\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(2n+2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\left[\text{vì }\left(2n+2\right)⋮\left(n+1\right)\right]\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\text{Trường hợp : }n+1=1\)
\(\Rightarrow n=1-1\)
\(\Rightarrow n=0\)
\(\text{Trường hợp : }n+1=5\)
\(\Rightarrow n=5-1\)
\(\Rightarrow n=4\)
\(\text{Vậy }n\in\left\{0;4\right\}\)
5/
+/ n-1=(n+5)-6 => để n-1 là bội của n+5 thì 6 phải chia hết cho n+5 => n+5={-6, -3, -2, -1, 1, 2, 3, 6}
=> n={-11, -8, -7, -6, 1, 2, 3, 4}. (1)
+/ n+5=n-1+6 => để n+5 là bội của n-1 thì 6 phải chia hết cho n-1 => n-1={-6, -3, -2, -1, 1, 2, 3, 6}
=> n={-5; -2; -1; 0; 2; 3; 4; 7} (2)
Từ (1) và (2), để thỏa mãn đầu bài thì n={2; 3; 4}
6) a) n2-7=n2+3n-3n-9+2 = n(n+3)-3(n+3)+2
=> Để n2-7 là bội của n+3 thì 2 phải chia hết cho n+3 => n+3={-2, -1, 1, 2} => n={-5; -4; -2; -1}
Bài 1
a) Ta có: a+5=a-2+7
=> 7 chia hết cho a-2 hay a-2 thuộc Ư (7)={-7;-1;1;7}
=> a={-5;1;3;9}
b) 3a=3(a-1)+3
=> 3 chia hết cho a-1 hay a-1 thuộc Ư (3)={-3;-1;1;3}
=> a={-2;0;2;4}
c) Ta có 5a-8=5(a-4)+12
=> 12 chia hết cho a-4
hay a-4 thuộc Ư (12)={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
=> a={-8;-2;0;1;2;3;5;6;7;8;10;16}
Bài 2:
a) 4n-3 chia hết cho n
=> 3 chia hết cho n hay n thuộc Ư (3)={-3;-1;1;3}
b) -13 là bội của 2n-1
=> 2n-1 thuộc Ư (-13)={-13;-1;1;13}
=> 2n={-12;0;2;14}
=> n={-6;0;1;7}
Bài 1:
a) Ta có: \(a+5⋮a-2\)
\(\Leftrightarrow a-2+7⋮a-2\)
mà \(a-2⋮a-2\)
nên \(7⋮a-2\)
\(\Leftrightarrow a-2\inƯ\left(7\right)\)
\(\Leftrightarrow a-2\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow a\in\left\{3;1;9;-5\right\}\)(tm)
Vậy: \(a\in\left\{3;1;9;-5\right\}\)
b) Ta có: \(3a⋮a-1\)
\(\Leftrightarrow3a-3+3⋮a-1\)
mà \(3a-3=3\left(a-1\right)⋮a+1\)
nên \(3⋮a-1\)
\(\Leftrightarrow a-1\inƯ\left(3\right)\)
\(\Leftrightarrow a-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow a\in\left\{2;0;4;-2\right\}\)(tm)
Vậy: \(a\in\left\{2;0;4;-2\right\}\)
c) Ta có: \(5a-8⋮a-4\)
\(\Leftrightarrow5a-20+12⋮a-4\)
mà \(5a-20=5\left(a-4\right)⋮a-4\)
nên \(12⋮a-4\)
\(\Leftrightarrow a-4\inƯ\left(12\right)\)
\(\Leftrightarrow a-4\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
hay \(a\in\left\{5;3;6;2;7;1;8;0;10;-2;16;-8\right\}\)(tm)
Vậy: \(a\in\left\{5;3;6;2;7;1;8;0;10;-2;16;-8\right\}\)
d) Ta có: \(a^2+a+2⋮a+1\)
\(\Leftrightarrow a^2+2a+1-a+1⋮a+1\)
\(\Leftrightarrow\left(a+1\right)^2-a+1⋮a+1\)
mà \(\left(a+1\right)^2⋮a+1\)
nên \(-a+1⋮a+1\)
\(\Leftrightarrow-\left(a-1\right)⋮a+1\)
hay \(a-1⋮a+1\)
\(\Leftrightarrow a+1-2⋮a+1\)
mà \(a+1⋮a+1\)
nên \(-2⋮a+1\)
\(\Leftrightarrow a+1\inƯ\left(-2\right)\)
\(\Leftrightarrow a+1\in\left\{1;-1;2;-2\right\}\)
hay \(a\in\left\{0;-2;1;-3\right\}\)
Vậy: \(a\in\left\{0;-2;1;-3\right\}\)
Bài 2:
a) Ta có: \(4n-3⋮n\)
Vì 4n⋮n
nên -3⋮n
hay n∈Ư(-3)
⇔n∈{1;-1;3;-3}(tm)
Vậy: n∈{1;-1;3;-3}
b) Ta có: -13 là bội của 2n-1
⇔2n-1∈Ư(-13)
⇔2n-1∈{1;-1;13;-13}
⇔2n∈{2;0;14;-12}
hay n∈{1;0;7;-6}(tm)
Vậy: n∈{1;0;7;-6}
Bài 1:
a/ a + 5 ⋮ a - 2
=> a - 2 + 7 ⋮ a - 2
Có a - 2 ⋮ a - 2 nên để a + 5 ⋮ a - 2 thì 7 ⋮ a - 2
=> a - 2 ∈ Ư(7)
=> a - 2 ∈ {1; -1; 7; -7}
=> a ∈ {3; 1; 9; -5}
b/ 3a ⋮ a - 1
=> 3. (a + 1) + 3 ⋮ a - 1
Có: 3. (a + 1) ⋮ a - 1 => Để 3a ⋮ a - 1 thì 3 ⋮ a - 1
=> a - 1 ∈ Ư(3)
=> a - 1 ∈ {1; -1; 3; -3}
=> a ∈ {2; 0; 4; -2}
a - 5 la boi cua 3a - 1
\(\Rightarrow a-5⋮3a-1\)
\(\Rightarrow3a-15⋮3a-1\)
\(\Rightarrow3a-1-14⋮3a-1\)
\(\Rightarrow14⋮3a-1\)
Cái tên của cậu ..., tớ không trả lời đâu