K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

Ta có I1-2xI >_0 nên 3I1-2xI>_0 nên 3I1-2xI-5>_-5.

Vậy GTNN A=-5 khi x=1/2

a: Ta có: \(3\left|2x+5\right|\ge0\forall x\)

\(\Leftrightarrow3\left|2x+5\right|-7\ge-7\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{5}{2}\)

c: ta có: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(2x-3\right)^2-14\ge-14\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

31 tháng 8 2021

b,c,d đâu bạn

 

27 tháng 8 2017

\(D=-3-\left|2x+4\right|\)

\(\left|2x+4\right|\ge0\forall x\)

\(D=-3-\left|2x+4\right|\le3\)

Dấu "=" xảy ra khi:

\(\left|2x+4\right|=0\Rightarrow x=-2\)

\(A=3\left|1-2x\right|-5\)

\(\left|1-2x\right|\ge0\Rightarrow3\left|1-2x\right|\ge0\forall x\)

\(A=3\left|1-2x\right|-5\ge-5\)

Dấu "=" xảy ra khi:

\(3\left|1-2x\right|=0\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

27 tháng 8 2017

Hồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnNguyễn Nhã HiếuHồng Phúc NguyễnHồng Phúc Nguyễn

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

a.

Tìm min:

$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$

Vậy $y_{\min}=2$

----------------

Mặt khác: 

$y=4\sin x(\sin x+1)-8(\sin x+1)+11$

$=(\sin x+1)(4\sin x-8)+11$

$=4(\sin x+1)(\sin x-2)+11$

Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$

$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$

$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$

Vậy $y_{\max}=11$

 

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

b.

$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$

$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$

Vậy $y_{\max}=4$.

---------------------------

Mặt khác:

$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$

$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$

$=(1+\sin x)(3-\sin x)$

Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$

$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$

Vậy $y_{\min}=0$

29 tháng 9 2017

Tìm GTLN 

a) Ta có: A = 15 - 3 | x - 7 | 

Để A đạt GTLN khi 3 | x - 7 |  đạt GTNN

 \(\Rightarrow3\left|x-7\right|=0\Rightarrow\left|x-7\right|=0\Rightarrow x-7=0\Rightarrow x=7\)

Vậy để biểu thức đạt GTLN khi A = 15 và x = 7 

NV
9 tháng 7 2021

a.

\(y=\dfrac{3}{2}sin2x-2\left(cos^2x-sin^2x\right)+5=\dfrac{3}{2}sin2x-2cos2x+5\)

\(=\dfrac{5}{2}\left(\dfrac{3}{5}sin2x-\dfrac{4}{5}cos2x\right)+5=\dfrac{5}{2}sin\left(2x-a\right)+5\) (với \(cosa=\dfrac{3}{5}\))

\(\Rightarrow-\dfrac{5}{2}+5\le y\le\dfrac{5}{2}+5\)

b.

\(\Leftrightarrow y.sinx-2y.cosx+4y=3sinx-cosx+1\)

\(\Leftrightarrow\left(y-3\right)sinx+\left(1-2y\right)cosx=1-4y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(y-3\right)^2+\left(1-2y\right)^2\ge\left(1-4y\right)^2\)

\(\Leftrightarrow11y^2+2y-9\le0\)

\(\Leftrightarrow-1\le y\le\dfrac{9}{11}\)

NV
9 tháng 7 2021

c.

Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(\Rightarrow y=\dfrac{2\left(sin^2a+6sina.cosa\right)}{1+2sina.cosa+cos^2a}=\dfrac{1-cos2a+6sin2a}{1+sin2a+\dfrac{1+cos2a}{2}}=\dfrac{2-2cos2a+12sin2a}{3+2sin2a+cos2a}\)

\(\Leftrightarrow3y+2y.sin2a+y.cos2a=2-2cos2a+12sin2a\)

\(\Leftrightarrow\left(2y-12\right)sin2a+\left(y+2\right)cos2a=2-3y\)

Theo điều kiện có nghiệm của pt bậc nhất theo sin2a, cos2a:

\(\left(2y-12\right)^2+\left(y+2\right)^2\ge\left(2-3y\right)^2\)

\(\Leftrightarrow y^2+8y-36\le0\)

\(\Rightarrow-4-2\sqrt{13}\le y\le-4+2\sqrt{13}\)

a: -1<=cos2x<=1

=>3>=-3cos2x>=-3

=>7>=-3cos2x+4>=1

=>7>=y>=1

\(y_{min}=1\) khi \(cos2x=1\)

=>2x=k2pi

=>x=kpi

\(y_{max}=-1\) khi cos2x=-1

=>2x=pi+k2pi

=>x=pi/2+kpi

b: \(0< =sin^2x< =1\)

=>\(3< =sin^2x+3< =4\)

=>3<=y<=4

y min=3 khi sin^2x=0

=>sinx=0

=>x=kpi

y max=4 khi sin^2x=1

=>cos^2x=0

=>x=pi/2+kpi

c: \(y=sin2x+3\)

-1<=sin2x<=1

=>-1+3<=sin2x+3<=1+3

=>2<=y<=4

\(y_{min}=2\) khi sin 2x=-1

=>2x=-pi/2+k2pi

=>x=-pi/4+kpi

y max=4 khi sin2x=1

=>2x=pi/2+k2pi

=>x=pi/4+kpi

5 tháng 11 2019

\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)

\(A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\)

+) Đặt \(B=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(x-1\right)\left(4-x\right)=0\)

\(\Leftrightarrow1\le x\le4\)

+) Đặt \(C=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)

Dấu bằng xảy ra \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow2\le x\le3\)

\(\Rightarrow A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge4\)

Dấu '' = '' xảy ra

\(\Leftrightarrow\hept{\begin{cases}1\le x\le4\\2\le x\le3\end{cases}\Leftrightarrow2\le x\le3}\)

Vậy.................

4 tháng 11 2019

Alan Walker bạn vào câu hỏi này tham khảo nha : https://olm.vn/hoi-dap/detail/211209248935.html

Hoặc bạn vào trong câu hỏi tương tự nha !

24 tháng 7 2019

Ta có : \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\left|x-2\right|+\left|x-1\right|+\left|3-x\right|\ge\left|x-2\right|+\left|x-1+3-x\right|=\left|x-2\right|+\left|2\right|=\left|x-2\right|+2\)

Lại có : \(\left|x-2\right|\ge0=>\left|x-2\right|+2\ge2\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2=0\\2\le x\le3\end{cases}}=>x=2\)(cái 2 bé hơn bằng x bé hơn bằng 3 là xảy ra khi |x-1|+|3-x|=|x-1+3-x| đó nha , cái phần này thì bạn xét trường hợp sẽ có : 2 <=x<=3)

Vậy A đạt giá trị nhỏ nhất là 2 khi x=2

Bài này thì mik nhớ phương pháp làm là ghép thằng |x-1| và |x-3| lại chứ mik ko rõ làm sao mà phải ghép nha sorry bạn , phần này hồi lớp 7 mik ko học kĩ lắm

B tương tự , chúc bạn học tốt !