Tính nhanh (1+1/2)x(1+1/3)x(1+1/4)x...x(1+1/100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = \(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}\)
M = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
M = \(1-\dfrac{1}{100}\)
M = \(\dfrac{99}{100}\)
\(M=1\times\dfrac{1}{2}+\dfrac{1}{2}\times\dfrac{1}{3}+\dfrac{1}{3}\times\dfrac{1}{4}+...+\dfrac{1}{99}\times\dfrac{1}{100}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(M=1-\dfrac{1}{100}\)
\(M=\dfrac{99}{100}\)
\(1\frac{1}{2}\times1\frac{1}{3}\times1\frac{1}{4}\times...\times1\frac{1}{100}\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{101}{100}\)
\(=\frac{3\times4\times5\times...\times101}{2\times3\times4\times...\times100}\)
\(=\frac{101}{2}\)
(1-1/2) x (1-1/3) x .... x (1-1/100)
= 1/2 x 2/3 x ... x 99/100
= 1x2x...x99/2x3x..x100
= 1/ 100
a, \(\frac{3}{5}+25-\frac{1}{5}\)
\(=\left(\frac{3}{5}-\frac{1}{5}\right)+25\)
\(=\frac{2}{5}+25\)
\(=25\frac{2}{5}\)
\(=25,4\)
b, \(13.3.32,27+67,63.39\)
\(=39.32,27+67,63.39\)
\(=39\left(32,37+67,63\right)\)
\(=39.100\)
\(=3900\)
c, \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{99}{100}\)
\(=\frac{1}{100}\)
Ta có:
\(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{100}\right)\)
\(=\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{4}{4}-\frac{1}{4}\right)\left(\frac{5}{5}-\frac{1}{5}\right)...\left(\frac{100}{100}-\frac{1}{100}\right)\)
\(=\left(\frac{3-1}{3}\right)\left(\frac{4-1}{4}\right)\left(\frac{5-1}{5}\right)...\left(\frac{100-1}{100}\right)\)
\(=\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)
\(=\frac{2.3.4...99}{3.4.5...100}=\frac{2}{100}=\frac{1}{50}\)
Vậy \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{100}\right)=\frac{1}{50}\)
a: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2001}{2000}=\dfrac{2001}{2}\)
b: \(=101\left(34+13-27\right)=101\cdot20=2020\)
c: \(=24\%+8\%+59\%+9\%=1\)
a, = 1/2 x 2/3 x 3/4 x .... x 99/100 = 1/100
b, = 24/25 x 5/7 x 7/9 x .... x 97/99 = 24/25 x 5/99 = 8/165
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
=
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{101}{100}=\frac{101}{2}\)
=3/2x4/3x5/4....x101/100
=3x4x5x...x101/2x3x4x...x100
=101/2