K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2015

0 < a < 1

0.a < a.a < 1.a

=> 0 < a^2 < a

=> a^2 <a 

ko chắc

4 tháng 6 2015

0 < a < 1 nên a là phân số dương có tử nhỏ hơn mẫu.

Đặt a = \(\frac{b}{c}\)

Do đó a2 = \(\left(\frac{b}{c}\right)^2=\frac{b^2}{c^2}=\frac{b^2:c}{c^2:c}=\frac{b^2:c}{c}<\frac{b}{c}\)

=> ĐPCM

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

12 tháng 1 2018

Sửa đề như bên dưới

Giải

Vì \(a_1< a_2< a_3< ...< a_9\)

Nên: \(\frac{a_1+a_2+a_3+...+a_9}{a_3+a_6+a_9}< \frac{a_3+a_6+a_9+...+a_3+a_6+a_9}{a_3+a_6+a_9}=\frac{3\left(a_3+a_6+a_9\right)}{a_3+a_6+a_9}=3\)

13 tháng 3 2016

1)a+3>b+3

=>a>b

=>-2a<-2b

=>-2a+1<-2b+1

2)x>0;y<0 =>x2.y<0;x.y2>0

=>x2.y<0;-x.y2<0

=>x2y-xy2<0

13 tháng 3 2016

1.ta có a+3>b+3

suy ra -2a-6>-2b-6

=> (-2a-6)+5>(-2b-6)+5

=>-2a+1>-2b+1

2.vì x>0=> x^2>0 và y<0=>y^2>0

=> x^2*y<0 và x*y^2>0

=> x*y^2>x^2*y

=>x^2*y-x*y^2<0