K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2022

= 3/4 - 1/2 + 3/4

= 3/4+3/4-1/2

= 3/2-1/2

= 1

11 tháng 7 2022

\(\dfrac{3}{4}-\sqrt{\dfrac{3}{12}}+\dfrac{(\sqrt{3})^2}{4}\)

\(=\dfrac{3}{4}-\dfrac{1}{2}+\dfrac{3}{4}\)

\(=\dfrac{3}{4}-\dfrac{2}{4}+\dfrac{3}{4}\)

\(=\dfrac{4}{4}=1\)

20 tháng 10 2023

a: \(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\)

\(=\left(\dfrac{5}{9}-\dfrac{3}{12}\right)\cdot\dfrac{4}{3}+\dfrac{11}{3}\cdot\dfrac{4}{3}\)

\(=\left(\dfrac{5}{9}-\dfrac{1}{4}+\dfrac{11}{3}\right)\cdot\dfrac{4}{3}\)

\(=\dfrac{20-9+132}{36}\cdot\dfrac{4}{3}\)

\(=\dfrac{143}{3}\cdot\dfrac{1}{9}=\dfrac{143}{27}\)

b: \(\left(0.\left(3\right)+\dfrac{\left|-2\right|}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)

\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\cdot\dfrac{4}{5}-1\)

\(=\dfrac{4}{5}-1=-\dfrac{1}{5}\)

31 tháng 12 2023

a: \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}\cdot\sqrt{\dfrac{49}{4}}\right):\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]:\dfrac{1704}{445}\)

\(=\left(\dfrac{55}{3}:15+\dfrac{26}{3}\cdot\dfrac{7}{4}\right):\left[\left(12+\dfrac{1}{3}+8+\dfrac{6}{7}\right)-\dfrac{7}{18}\right]\cdot\dfrac{445}{1704}\)

\(=\left(\dfrac{55}{45}+\dfrac{91}{6}\right):\left[20+\dfrac{101}{126}\right]\cdot\dfrac{445}{1704}\)

\(=\dfrac{295}{18}:\dfrac{2621}{126}\cdot\dfrac{445}{1704}\)

\(=\dfrac{295}{18}\cdot\dfrac{126}{2621}\cdot\dfrac{445}{1704}\simeq0,21\)

b: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

c: \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{n}{n+1}\)

\(=\dfrac{1}{n+1}\)

d: \(-66\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)+124\cdot\left(-37\right)+63\cdot\left(-124\right)\)

\(=-66\cdot\dfrac{33-22+6}{66}+124\left(-37-63\right)\)

\(=-17-12400=-12417\)

e: \(\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)

\(=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(=\dfrac{7}{4}\cdot33\cdot\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)

\(=33\cdot\dfrac{7}{4}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(=33\cdot\dfrac{7}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(=33\cdot\dfrac{7}{4}\cdot\dfrac{4}{21}=\dfrac{33\cdot1}{3}=11\)

a) Ta có: \(A=\sqrt{20}-2\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=2\sqrt{5}-6\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)

\(=-4\sqrt{5}+15\sqrt{2}\)

b) Ta có: \(B=4\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{12}+4\sqrt{\dfrac{1}{2}}\)

\(=4\left(\sqrt{3}-1\right)+2\cdot2\sqrt{3}+\dfrac{4}{\sqrt{2}}\)

\(=4\sqrt{3}-4+4\sqrt{3}+2\sqrt{2}\)

\(=8\sqrt{3}+2\sqrt{2}-4\)

c) Ta có: \(C=\left(3+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(3-\dfrac{3+\sqrt{3}}{1+\sqrt{3}}\right)\)

\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)

=9-3

=6

d) Ta có: \(D=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)

\(=2-\sqrt{3}+2+\sqrt{3}\)

=4

13 tháng 8 2018

\(\left(\dfrac{3}{3}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right)\left(3\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)

=\(\left(\dfrac{3}{2}\sqrt{6}+\dfrac{2\sqrt{6}}{3}-2\sqrt{6}\right)\left(\dfrac{3\sqrt{2}}{3}-\sqrt{12}-\sqrt{6}\right)\)

=\(\text{[}\sqrt{6}\left(\dfrac{3}{2}+\dfrac{2}{3}-2\right)\text{]}.\left(-2\sqrt{3}\right)\)

=\(\dfrac{1}{6}\sqrt{6}.\left(-2\sqrt{3}\right)=-\sqrt{2}\)

1 tháng 10 2023

\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)

\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)

\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)

\(A=2^2-\left(\sqrt{5}\right)^2\)

\(A=4-5\)

\(A=-1\)

____

\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)

\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)

\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)

\(B=6-121\)

\(B=-115\)

2) Ta có: \(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}+\dfrac{12}{\sqrt{6}-3}-\sqrt{6}\)

\(=3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)-\sqrt{6}\)

\(=3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}-\sqrt{6}\)

\(=-11\)

3) Ta có: \(\left(\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{6}+\sqrt{2}}\right)\left(\sqrt{3}-1\right)^2\)

\(=\left(\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}\right)\left(4-2\sqrt{3}\right)\)

\(=\left(\sqrt{6}+\sqrt{5}\right)\left(4-2\sqrt{3}\right)\)

\(=4\sqrt{6}-6\sqrt{2}+4\sqrt{5}-2\sqrt{15}\)

12 tháng 7 2021

còn câu 1

\(=\left(\dfrac{3\sqrt{6}}{2}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}-2\sqrt{3}\right)\)

\(=-2\sqrt{3}\cdot\dfrac{1}{6}\sqrt{6}=-\dfrac{1}{3}\sqrt{18}=-\sqrt{2}\)

21 tháng 7 2023

a) \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)

\(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}\)

\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{3^2-\left(\sqrt{5}\right)^2}}\)

\(=\dfrac{\left|3-\sqrt{5}\right|}{\sqrt{9-5}}\)

\(=\dfrac{3-\sqrt{5}}{2}\)

b) \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}\)

\(=\dfrac{\left|2-\sqrt{3}\right|}{\sqrt{4-3}}\)

\(=\dfrac{2-\sqrt{3}}{1}\)

\(=2-\sqrt{3}\)

a: \(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}}=\dfrac{3-\sqrt{5}}{2}\)

b: \(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{1}}=2-\sqrt{3}\)

d: \(=\left(-3+3\sqrt{6}+4+2\sqrt{6}-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

=(căn 6-11)(căn 6+11)

=6-121=-115