tìm n thuộc tập hợp số tự nhiên
n+19 chia hết 2n +4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
- 2n - 1 = -1 <=> n = 0
- 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
- 2n - 1 = 1 <=> n = 1
- 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
Mình copy bài nhé , mình chỉ muốn giúp bạn thôi
Vì ( 2n + 5 ) chia hết cho ( n + 1 ) => [ 2n + 5 - 2 ( n + 1 )] chia hết cho ( n + 1 )
=> 3 chia hết cho n + 1
=> n + 1 là ước của 3
với n + 1 = 1 => n = 0
với n + 1 = 3 +> n = 2
Đáp số : n= 0, n = 2
2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2.(n + 1) + 3 chia hết cho n + 1
Do 2.(n + 1) chia hết cho n + 1 => 3 chia hết cho n + 1
Mà \(n\in N\)=> \(n+1\ge1\)=> \(n+1\in\left\{1;3\right\}\)
=> \(n\in\left\{0;2\right\}\)
2n+3 ⋮ n+1
=> 2n+2+1 ⋮ n+1
=> 2(n+1)+1 ⋮ n+1
Vì 2(n+1) ⋮ n+1 nên để 1 ⋮ n+1
=> n+1 \(\in\) Ư(1) = {1}
+) n+1 = 1 => n=0
Vậy n = {0}