cmr f(x)=(x^2-3x+1)^31-(x^2-4x+5)^30+2 chia hết cho x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A(x) = x-2 = 0
\(\Rightarrow x=2\)
\(\Rightarrow\) nghiệm của A(x) là 2
Thay x = 2 vào f(x) ta được
\(\Rightarrow f\left(2\right)=\left(4-6+1\right)^{31}-\left(4-8+5\right)^{30}+2\)
\(\Rightarrow f\left(2\right)=\left(-1\right)^{31}-1^{30}+2\)
\(\Rightarrow f\left(2\right)=-2+2\)
\(\Rightarrow f\left(2\right)=0\)
\(\Rightarrow2\) là nghiệm của \(f\left(x\right)\)
Mà theo định lí Bê - đu ta có :
Đa thức f(x) chia hết cho x - a khi và chỉ khi f(a) = 0 ( tức là khi và chỉ khi a là nghiệm của đa thức)
\(\Rightarrow f\left(x\right)=\left(x^2-3x+1\right)^{31}-\left(x^2-4x+5\right)^{30}+2⋮x-2\)
d) x+5 chia hết cho x-2
=>x-2+7 chia hết cho x-2
=>7 chia hết cho x-2
=>x-2 thuộc Ư(7)={-1;1;-7;7}
=>x thuộc {1;3;-5;9}
e) 3x-8 chia hết cho x-4
.=>3x-12+4 chia hết cho x-4
=>4 chia hết cho x-4
=>x-4 thuộc Ư(4)={-1;1;-2;2;-4;4}
=.> x thuộc {3;5;2;6;0;8}
g) x-3 chia hết cho 3x+1
=>3x-9 chia hết cho 3x+1
=>3x+1-10 chia hết cho 3x+1
=>10 chia hết cho 3x+1
=>3x+1 thuộc Ư(10)={-1;1;-2;2;-5;5;-10;10}
=>3x thuộc {-2;0;-3;1;-6;4;-11;9}
loại trương hợp 3x thuộc {-2;1;4;-11} vì -2;4;1;-11 k chia hết cho 3
=>3x thuộc{0;-3;-6;9}
=>x thuộc {0;-1;-2;3}
f) 4x +3 chia hết cho x-2
=>4x-4+7 chia hết cho x-2
=>7 chia hết cho x-2
=>x-2 thuộc Ư(7)={-1;1;-7;7}
=>x thuộc {1;3;-5;9}
e) 3x-8 chia hết cho x-4
5.
$4x+3\vdots x-2$
$\Rightarrow 4(x-2)+11\vdots x-2$
$\Rightarrow 11\vdots x-2$
$\Rightarrow x-2\in \left\{1; -1; 11; -11\right\}$
$\Rightarrow x\in \left\{3; 1; 13; -9\right\}$
6.
$3x+9\vdots x+2$
$\Rightarrow 3(x+2)+3\vdots x+2$
$\Rightarrow 3\vdots x+2$
$\Rightarrow x+2\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow x\in \left\{-1; -3; 1; -5\right\}$
7.
$3x+16\vdots x+1$
$\Rightarrow 3(x+1)+13\vdots x+1$
$\Rightarrow 13\vdots x+1$
$\Rightarrow x+1\in \left\{1; -1; 13; -13\right\}$
$\Rightarrow x\in\left\{0; -2; 12; -14\right\}$
8.
$4x+69\vdots x+5$
$\Rightarrow 4(x+5)+49\vdots x+5$
$\Rightarrow 49\vdots x+5$
$\Rightarrow x+5\in\left\{1; -1; 7; -7; 49; -49\right\}$
$\Rightarrow x\in \left\{-4; -6; 2; -12; 44; -54\right\}$
** Bổ sung điều kiện $x$ là số nguyên.
1. $x+9\vdots x+7$
$\Rightarrow (x+7)+2\vdots x+7$
$\Rightarrow 2\vdots x+7$
$\Rightarrow x+7\in \left\{1; -1; 2; -2\right\}$
$\Rightarrow x\in \left\{-6; -8; -5; -9\right\}$
2. Làm tương tự câu 1
$\Rightarrow 9\vdots x+1$
3. Làm tương tự câu 1
$\Rightarrow 17\vdots x+2$
4. Làm tương tự câu 1
$\Rightarrow 18\vdots x+2$
Bài I :
1 ) \(3x\left(x-5\right)-\left(3x+2\right)\left(3x-2\right)=31\)
\(\Leftrightarrow3x^2-15x-9x^2+4-31=0\)
\(\Leftrightarrow-6x^2-15x-27=0\)
Phương trình vô nghiệm .
2 )
\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=16\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
Bài II :
\(B=n\left(n+5\right)-\left(n-3\right)\left(n+20\right)\)
\(=n^2+5n-n^2-17n+60\)
\(=-12n+60\)
\(=-12\left(n-5\right)\)
Vì \(-12\) chia hết cho 6 \(\Rightarrow-12\left(n-5\right)\) chia hết cho 6 .
Vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+20\right)\) chia hết cho 6 (đpcm)