K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

(chứng minh rằng\) x y 3 −1 - Online Math

13 tháng 5 2020

Ta có \(y^3-1=\left(y-1\right)\left(y^2+y+1\right)=-x\left(y^2+y+1\right)\)

(vì \(xy\ne0\Rightarrow x,y\ne0\))

\(\Rightarrow x-1\ne0;y-1\ne0\)

\(\Rightarrow\frac{x}{y^3-1}=\frac{-1}{y^2+y+1}\)

\(x^3-1=\left(x-1\right)\left(x^2-x+1\right)=-y\left(x^2-x+1\right)\Rightarrow\frac{y}{x^3-1}=\frac{-1}{x^2+x+1}\)

\(\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{-1}{y^2+y+1}+\frac{-1}{x^2+x+1}\)

\(=-\left(\frac{x^2+x+1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\right)=-\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)+2}{x^2y^2+\left(x+y\right)^2-2xy+xy\left(x+y\right)+xy+\left(x+y\right)+1}\right)\)

\(=-\frac{4-2xy}{x^2y^2+3}\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)

17 tháng 10 2015

Đặt \(\frac{x}{4}=\frac{y}{7}\) = k => x = 4k; y = 7k ( k khác 0)

Thay vào C ta được: \(C=\frac{\left(1+\sqrt{3}\right)\left(4k\right)^2.7k-\left(2-\sqrt{5}\right).4k.\left(7k\right)^2}{\left(4k\right)^3+\left(7k\right)^3}=\frac{\left(112.\left(1+\sqrt{3}\right)-196.\left(2-\sqrt{5}\right)\right).k^3}{407k^3}\)

\(C=\frac{112+112\sqrt{3}-392+196\sqrt{5}}{407}=\frac{112\sqrt{3} +196\sqrt{5}-280}{407}\)

6 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

NM
6 tháng 1 2021

Xét \(\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{1-y}{y^3-1}+\frac{1-x}{x^3-1}=-\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}\)

\(=-\frac{x^2+y^2+x+y+2}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=-\frac{x^2+y^2+3}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1}\)

\(=-\frac{\left(x+y\right)^2-2xy+3}{x^2y^2+x^2+y^2+2xy+2}=-\frac{4-2xy}{x^2y^2+3}=\frac{2\left(xy-2\right)}{x^2y^2+3}\)

từ đó ta có đpcm

8 tháng 8 2016

+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)

+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)

\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)

+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Áp dụng bđt Bunhiacopxki

\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)

\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)

(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Tương tự: \(xy^2+yz^2+zx^2\le3\)

\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)

\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)

8 tháng 8 2016

dvdfhfeye5

26 tháng 3 2017

để cm thì ta cần cm nó đúng khi x+y=1 

x+y=1

y=-(x-1) và x=-(y-1)

thế vào ta được 

-(x-1)/(x^3-1)--(y-1)/(y^3-1)=2(x-y)/(x^2y^2+3)

ta có x^3-1=(x-1)(x^2+x+1),y^3-1=(y-1)(y^2+y+1)

từ đó rút gọn ta được -1/(x^2+x+1)+1/(y^2+y+1)=2(x-y)/(x^2y^2+3)

1/(y^2+y+1)-1/(x^2+x+1)=2(x-y)/(x^2y^2+3)

(x^2+x+1-y^2-y-1)/(y^2+y+1)(x^2+x+1)=2(x-y)/(x^2y^2+3)

ta có x^2+x+1-y^2-y-1=x^2-y^2+x-y=(x-y)(x+y)+x-y=(x-y)(x+y+1)=2(x-y)

từ đó suy ra 2(x-y)/(y^2+y+1)(x^2+x+1)=2(x-y)/(x^2y^2+3)

suy ra (y^2+y+1)(x^2+x+1)=x^2+y^2+3

x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1=x^2y^2+3

x^2y^2+(xy^2+y^2+x^2y+xy+x^2)+x+y+1=x^2y^2+3

x^2y^2+(xy^2+y^2+x^2y+xy+x^2)+2=x^2y^2+3 

ta có xy^2+y^2+x^2y+xy+x^2

=xy(x+y)+xy+y^2+x^2

=x^2+2xy+y^2

=(x+y)^2

=1^2

=1 

thế vào ta được 

x^2y^2+3=x^2y^2+3

vậy pt trên đúng khi x+y=1

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!!

5 tháng 12 2018

\(\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)

\(=\left(xy+\frac{1}{xy}\right)\left[\left(xy+\frac{1}{xy}\right)-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\right]\)

\(=\left(xy+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}-xy-\frac{x}{y}-\frac{y}{x}-\frac{1}{xy}\right)\)

\(=\left(xy+\frac{1}{xy}\right)\left(-\frac{x}{y}-\frac{y}{x}\right)\)

\(=-\left(xy+\frac{1}{xy}\right)\left(\frac{x}{y}+\frac{y}{x}\right)=-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(=4\)

Vậy giá trị bt ko phụ thuộc vào biến

5 tháng 12 2018

bn có thể giải thích rõ hơn tại sao lại bằng 4 được không? Dù gì thì cx cảm ơn bn đã tl câu hỏi của mk

10 tháng 7 2020

Đây là lời giải của mình bên đó nhé.

10 tháng 7 2020

Nên ko tặng GP đâu:))