p=(1/căn x +căn x/căn x+1):căn x/x+căn x
a)rút gọn p
b)tính giá trị của p khi x=4
c)tinh gt của x dể p=13/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)
\(=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)
\(=\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1-\sqrt{x}+\sqrt{x}}{-x+\sqrt{x}}=\frac{1}{\sqrt{x}-x}\)
b, Ta có : \(x=7+4\sqrt{3}=7+2.2\sqrt{3}=\left(\sqrt{4}+\sqrt{3}\right)^2\)
\(A=\frac{1}{\sqrt{4}+\sqrt{3}-7+4\sqrt{3}}\)
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.
`a)`\(P=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\);\(ĐK:x>0\)
\(P=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}.\left(\sqrt{x}+1\right)\)
\(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
`b)`Thế `x=4` vào `P`, ta được:
\(P=\dfrac{4+\sqrt{4}+1}{\sqrt{4}}=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)
`c)`\(P=\dfrac{13}{3}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\dfrac{13}{3}\)
\(\Leftrightarrow3\left(x+\sqrt{x}+1\right)=13\sqrt{x}\)
\(\Leftrightarrow3x-10\sqrt{x}+3=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)\left(3\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=\dfrac{1}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=9\\x=\dfrac{1}{9}\end{matrix}\right.\) ( tm )
Vậy \(S=\left\{9;\dfrac{1}{9}\right\}\)