K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

Đặt \(A=\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)+16\)

<=>\(A=\left[\left(x+3\right)\left(x+9\right)\right]\left[\left(x+5\right)\left(x+7\right)\right]+16\)

<=>\(A=\left(x^2+12x+27\right)\left(x^2+12x+35\right)+16\)

Đặt \(t=x^2+12x+27\) <=> \(A=t\left(t+8\right)+16=t^2+8t+16=\left(t+4\right)^2\)

<=>\(A=\left(x^2+12x+27+4\right)^2=\left(x^2+12x+31\right)^2\)

Vậy A là số chính phương

28 tháng 11 2016

M= (x+3)(x+9)(x+5)(x+7)+16=(x2+12x+27)(x2+12x+35)+16

Đạt x2+12x+27= t.  Ta có:

M=t(t+8)+16=t2+8t+16=(t+4)2   -> là scp

=>dpcm

10 tháng 4 2021

\(P=\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)+16\)

\(P=\left[\left(x+5\right)\left(x+11\right)\right]\left[\left(x+7\right)\left(x+9\right)\right]+16\)

\(P=\left(x^2+16x+55\right)\left(x^2+16x+63\right)+16\)

Đặt \(x^2+16x+59=a\), do đó:

\(P=\left(a-4\right)\left(a+4\right)+16\)

\(P=a^2-16+16=a^2\)

\(P=\left(x^2+16+59\right)^2\)

Do đó P là một số chính phương.

10 tháng 4 2021

Ta có: 

\(P=\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)+16\)

\(P=\left[\left(x+5\right)\left(x+11\right)\right]\left[\left(x+7\right)\left(x+9\right)\right]+16\)

\(P=\left(x^2+16x+55\right)\left(x^2+16x+63\right)+16\)

\(P=\left[\left(x^2+16x+59\right)-4\right]\left[\left(x^2+16x+59\right)+4\right]+16\)

\(P=\left(x^2+16x+59\right)^2-4^2+16\)

\(P=\left(x^2+16x+59\right)^2\)

Vì x nguyên => P là số chính phương

=> đpcm

3 tháng 8 2023

\(p=\left[\left(x+5\right).\left(x+11\right)\right].\left[\left(x+7\right).\left(x+9\right)\right]+16=\)

\(=\left(x^2+16x+55\right)\left(x^2+16x+63\right)+16=\)

\(=\left(x^2+16x\right)^2+118.\left(x^2+16x\right)+3481=\)

\(=\left(x^2+16x\right)^2+2.\left(x^2+16x\right).59+59^2=\)

\(=\left[\left(x^2+16x\right)+59\right]^2\) là một số chính phương

21 tháng 10 2017

\(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+9\)

\(=\left(x^2+5x\right)\left(x^2+5x+6\right)+9\)

Đặt \(x^2+5x+3=a\),ta có

\(\left(a-3\right)\left(a+3\right)+9\)

\(=a^2-9+9\)

\(=a^2\)

Vậy biểu thức đã cho là số chính phương

24 tháng 9 2021

\(a,2x^2+y^2+6x-2xy+9=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+6x+9\right)=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-3\end{matrix}\right.\Leftrightarrow x=y=-3\\ b,A=\left(x-2021\right)^2+\left(x+2022\right)^2=x^2-4042x+2021^2+x^2+4044x+2022^2\\ A=2x^2+2x+2021^2+2022^2\\ A=2\left(x^2+x+\dfrac{1}{4}\right)+2021^2+2022^2-\dfrac{1}{2}\\ A=2\left(x+\dfrac{1}{2}\right)^2+2021^2+2022^2-\dfrac{1}{2}\ge2021^2+2022^2-\dfrac{1}{2}\\ A_{max}=2021^2+2022^2-\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)\(c,P=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\\ P=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\\ P=\left(a^2+8a+11\right)^2-16+16=\left(a^2+8a+11\right)^2\left(Đpcm\right)\)

27 tháng 10 2021

\(\left(x^2+6x+8\right)\left(x^2+14x+48\right)+16\)

\(=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)

\(=\left(x^2+10x+20\right)^2\)

1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0