( x^2 - 3 ) ^2 +16
Tím x là số tự nhiên hãy cm biểu thức trên có giá trị là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.
Mà $x-2< x+4$ nên $x-2=1$
$\Rightarrow x=3$
Thay vào $A$ thì $A=7$ là snt (thỏa mãn)
b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$
Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:
$x-2<0< x+4$
$\Rightarrow -4< x< 2$
$x$ nguyên nên $x=-3,-2,-1,0,1$
Tìm số tự nhiên \(x\) sao cho biểu thức P=(\(x\)-1)(\(x^2\)-\(x\)+1) có giá trị là một số nguyên tố.
`P= (x-1)(x^2-x+1)` là một số nguyên tố
`=>` \(\left[{}\begin{matrix}x-1=1\\x^2-x+1=1\end{matrix}\right.\)
`<=>` \(\left[{}\begin{matrix}x=2\\x=0\\x=1\end{matrix}\right.\)
1: \(D=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{x^2-16}\)
\(=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{\left(x+4\right)\left(x-4\right)}\)
\(=\dfrac{x-4+x\left(x+4\right)+24-x^2}{\left(x+4\right)\left(x-4\right)}\)
\(=\dfrac{-x^2+x+20+x^2+4x}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x+20}{\left(x+4\right)\left(x-4\right)}\)
\(=\dfrac{5\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5}{x-4}\)
2: Khi x=10 thì \(D=\dfrac{5}{10-4}=\dfrac{5}{6}\)
3: \(M=\left(x-2\right)\cdot D=\dfrac{5\left(x-2\right)}{x-4}\)
Để M là số nguyên thì \(5\cdot\left(x-2\right)⋮x-4\)
=>\(5\left(x-4+2\right)⋮x-4\)
=>\(5\left(x-4\right)+10⋮x-4\)
=>\(10⋮x-4\)
=>\(x-4\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
=>\(x\in\left\{5;3;6;2;9;-1;14;-6\right\}\)
\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)
\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)
Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT
\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)
- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)
Vậy \(x=1\)
Ta phải tìm số tự nhiên n để P = (n - 1)(n2- n + 1) là số nguyên tố .
P = (n - 1)(n2- n + 1) là một tích , P là số nguyên tố thì P chỉ có 2 ước số là 1 và chính nó. Như vậy P = (n - 1)(n2- n + 1) là số nguyên tố thì:
\(\orbr{\begin{cases}\hept{\begin{cases}n-1=1\\p=n^2-n+1\end{cases}}\\\hept{\begin{cases}n^2-n+1=1\\p=n-1\end{cases}}\end{cases}}\)- T rường hợp 1; n - 1 = 1 , tức là n = 2 khi đó p = n2 - n + 1 = 3 thỏa mãn
- Trường hơp 2 : n2 - n + 1 = 1 , ta tìm được n = 0 , n = 1 . Cả hai giá trị này đều cho ta số p = n - 1 không phải là số nguyên tố.
Trả lời n = 2 , p = 3