K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

\(Q=a^2+4b^2+10a=a^2+2.a.5+25-25+\left(2b\right)^2=\left(a+5\right)^2+\left(2b\right)^2+\left(-25\right)\)

\(\left(a+5\right)^2\ge0;\left(2b\right)^2\ge0=>\left(a+5\right)^2+\left(2b\right)^2\ge0=>\left(a+5\right)^2+\left(2b\right)^2+\left(-25\right)\ge0\)

Vậy GTNN của Q là - 25. Dấu "=" xảy ra khi a + 5 = 0 => a = -5 và 2b = 0 => b = 0

26 tháng 1 2017

Đó là 0

26 tháng 1 2017

Đậu Vân Nhi cho lời giải chi tiết đi =)))

15 tháng 12 2016

\(Q=a^2-10a+25-25+4b^2\)

\(Q=\left(a^2-2.5.a+5^2\right)+4b^2-25=\left(a-5\right)^2+4b^2-25\)

\(Q\ge-25\) đẳng thức khi \(\hept{\begin{cases}a=5\\b=0\end{cases}}\)

15 tháng 12 2016

Q=a2+4b2-10a

=a2-10a+25-25+4b2

=(a-5)2+4b2-25

\(\Rightarrow\left(a-5\right)^2+4b^2\ge0\) voi moi a

\(\Leftrightarrow\left(a-5\right)^2+4b^2\ge-25\)

Vay GTNN la -25

Dau "=" xay ra khi : a-5=0 \(\Rightarrow\)a=5

                              4b=0 \(\Rightarrow\)b=0

30 tháng 11 2016

a2 + 4b2 - 10a = (a2 - 10a + 25) + 4b2 - 25

= (a - 5)2 + 4b2 - 25\(\ge25\)

3 tháng 1 2017

Sai rồi cái này nhỏ nhất phải là -25 chứ

23 tháng 12 2016

-25

23 tháng 12 2016

Q=(a2 -10a+25)-25+4b2=(a-5)2+4b2-25\(\ge-25\)

27 tháng 12 2016

Q = a^2 + 4b^2 - 10a

Q = a^2 - 5a - 5a + 25 + 4b^2 - 25

Q = (a - 5)^2 + 4b^2 - 25 \(\ge\)-25

Dấu "=" xảy ra khi a - 5 = 0; b = 0

<=> a = 5; b = 0

Vậy Min Q = -25 khi a = 5; b = 0

27 tháng 12 2016

mấy bạn ơi mk biết làm rùi khỏi chỉ nha

tại hồi nãy mk quên cách làm

leuleu

15 tháng 12 2016

Q=a^2+4b^2-10a

Q=a^2-5a-5a+25+4b^2-25

Q=a(a-5)-5(a-5)+4b^2-25

Q=(a-5)^2+4b^2-25 >=-25

Dấu "=" xảy ra khi a-5=0;b=0

<=> a=5;b=0

Vậy Min Q=-25 khi a=5;b=0

4 tháng 3 2017

a2+4b2-10a

=a2-10a+4b2

=a2-10a+25+4b2-25

=(a-5)2+4b2-25

Vì (a-5)2>=0 với mọi a.Dấu bằng xảy ra khi a-5=0

<=> a =5

Lại có 4b2>=0 với mọi b.Dấu bằng xảy ra khi 4b2=0

<=> b2 =0

<=> b =0

=>(a-5)2+4b2-25>=-25 với mọi a;b.Dấu bắng xảy ra khi a=5;b=0

Vậy giá trị nhỏ nhất của Q là -25 tại a=5;b=0

31 tháng 12 2016

Q=a2+4b2-10a

=a2-10a+4b2

=a2-10a+25+4b2-25

=(a-5)2+(2b)2-25

\(\Rightarrow\left(a-5\right)^2\ge0\Leftrightarrow\left(a-5\right)^2\ge25\) với mọi a

\(\Rightarrow\left(2b\right)^2\ge0\Leftrightarrow\left(2b\right)^2\ge25\) với mọi b

Vậy GTNN là : 25

Dấu "="xảy ra khi : a-5=0\(\Rightarrow\)a=5

2b=0 \(\Rightarrow\) b=0

Nhớ tick

20 tháng 1 2018

\(a^2+b^2+16=8a+4b\)

<=>\(a^2+8a+16+b^2+4b+4=a\)

<=>\(\left(a-4\right)^2+\left(b-2\right)^2=4\)

áp dụng BĐT Bunhiacopski cho 2 bộ số ((a-4);(b-2)) và (4;3) ta được

\(\left[4\left(a-4\right)+3\left(b-2\right)\right]\le\left[\left(a-4\right)^2+\left(b-2\right)^2\right]\cdot\left(4^2+3^2\right)\)

(dấu bằng xảy ra khi \(\frac{a-4}{4}=\frac{b-2}{3}\))

<=>\(\left(S-22\right)\le100\)

<=>\(-10\le S-22\le10\)

hay \(12\le S\le32\) Từ đó tìm được minS=12 ;maxS=32

S=12 <=>  \(\hept{\begin{cases}4a+3b=12\\\frac{a-4}{4}=\frac{b-2}{3}\end{cases}}\)<=>...(Tự giải)

S=32 làm tương tự