Bài 4. Tam giác ABC cân tại A có góc A = 120°, các đường trung trực của AB và AC cắt nhau tại O, căt cạnh BC lần lượt tại E và F Chứng minh E là trực tâm, trọng tâm tam giác OAB và F là trực tâm, trọng tâm tam giác OAC Bài 5. Tam giác ABC. Qua các đinh A, B, C kẻ các đường thắng song song với cạnh đôi diện, chúng cắt nhau tạo thành tam giác DEF. Chứng minh răng các đường cao của tam giác ABC là các đường trung trực của tam giác DEF MECA và lấy điểm N sao c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi BD và CK là đường cao của \(\Delta\)ABC.
Ta có: ^KEH+^KHE=900 (Do \(\Delta\)EKH vuông tại K)
Mà ^KHE+^MHC=900
=> ^KEH=^MHC hay ^MHC=^HEA
Xét \(\Delta\)EHA và \(\Delta\)HMC: ^HEA=^MHC; ^EAH=^HCM (Cùng phụ ^ABC)
=> \(\Delta\)EHA ~ \(\Delta\)HMC (g.g) => \(\frac{EH}{HM}=\frac{AH}{MC}\)(1)
Chứng minh tương tự, ta được: \(\Delta\)HFA ~ \(\Delta\)MHB (g.g) => \(\frac{FH}{HM}=\frac{AH}{BM}\)(2)
Từ (1) và (2) => \(\frac{EH}{HM}=\frac{FH}{HM}\)(Do MC=MB) => EH=FH => H là trung điểm của EF
Xét \(\Delta\)MEF: Trung tuyến MH. Lại có: MH\(\perp\)EF => \(\Delta\)MEF cân tại M (đpcm).
cho mình hỏi là góc EAH cùng phụ với góc ABC ở chỗ nào ạ ?
Tính chất: Trong hình thoi, đường chéo này là trung trực của hai cạnh AB và AC. Nên E là tâm đường tròn ngoại tiếp của ∆ABC. Tương tự, F là tâm đường tròn ngoại tiếp của ∆ABD
a: O nằm trên trung trực của AB,AC
=>OA=OB; OA=OC
=>OB=OC
mà AB=AC
nên AO là trung trực của BC
b,c: Xét ΔEAB có EA=EB
nên ΔEAB cân tại E
=>góc EAB=30 độ
=>góc OAE=30 độ
Xet ΔFAC co FA=FC
nên ΔFAC cân tại F
=>góc FAC=30 độ
=>góc FAO=30 độ
=>góc EAO=góc FAO
=>AO là phân giác của góc FAE
mà AO vuông góc FE
nên ΔAFE cân tại A
=>ΔAEO=ΔAFO
=>OE=OF
=>ΔOEF cân tại O