CMR:
2 + 2^2 + 2^3 + ... + 2^60 chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(S=2+2^2+2^3+...+2^{60}\)
\(S=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(S=3\cdot\left(2+2^3+...+5^{59}\right)\)
Vậy S chia hết cho 3
________________________
\(S=2+2^2+2^3+...+2^{60}\)
\(S=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(S=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\)
\(S=5\left(2+2^2+....+2^{58}\right)\)
Vậy S chia hết cho 5
___________________________
\(S=2+2^2+2^3+...+2^{60}\)
\(S=2\left(1+2+2^2\right)+2^2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(S=7\cdot\left(2+2^2+...+2^{58}\right)\)
Vậy S chia hết cho 7
góp 3 cái vào với nhau là chia hết cho 7 r
còn chia hết cho 21 thì tớ chưa nghĩ ra
\(A=2+2^2+2^3+\dots+2^{60}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{59}+2^{60})\\=6+2^2\cdot(2+2^2)+2^4\cdot(2+2^2)+\dots+2^{58}\cdot(2+2^2)\\=6+2^2\cdot6+2^4\cdot6+\dots+2^{58}\cdot6\\=6\cdot(1+2^2+2^4+\dots+2^{58})\)
Vì \(6\cdot(1+2^2+2^4+\dots+2^{58})\vdots6\)
nên \(A\vdots6\)
A=2+2^2+2^3+...+2^60
A=(2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^60)
A=15.2^0+....+15.2^56
A=15.(2^0+2^4+...+2^56) chia hết cho 15
Vậy A chia hết cho 15
a) A = 2 + 2^2 + ... + 2^58 + 2^59 + 2^60
A = 2 ( 2 + 1 ) + 2^3 ( 2 + 1 ) + ... + 2^59 ( 2 + 1)
A = 3 .2 + 3.2^3 + ... + 3.2^59
A = 3 ( 2 + 2^3 + ... + 2^59 ) luôn chia hết cho 3
Ta có A = 2+22 + 23 + .....+ 259 + 260
= ( 2+ 22 + 23) +....+ (258 + 259 + 260)
= 2(1+2+4) +....+ 258( 1+2+4)
= 2 .7+24.7 +....+ 258 . 7
= 7( 2+24 + ....+ 258)
=> A chia hết cho 7
A = 2 + 22 + .... + 260
SSh của A là : (60 - 1) : 1 + 1 = 60 (số hạng)
Nếu nhóm 2 sh vào 1 nhóm thì số nhóm là :
60 : 2 = 30 (nhóm)
Ta có :
A = (2 + 22) + (23 + 24) + ... + (259 + 260)
A = 2.(1 + 2) + 23(1 + 2) + ... + 259(1 + 2)
A = 2 . 3 + 23 . 3 + ... + 259 . 3
A = 3 . (2 + 23 + ... + 259) chia hết cho 3
Vậy
\(A=2+2^2+...+2^{60}\)
\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{59}.\left(1+2\right)\)
\(A=2.3+2^3.3+2^{59}.3\)
\(A=3.\left(2+2^3+...+2^{59}\right)\)
\(=>A\) chia hết cho 3
a) cho A = 2+22+23+...+260
cmr A chia hết cho 3 và 7
b) cho B = 3+33+35+...+31991
cmr B chia hết cho 13
ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
A = 2 + 22 + 23 +......+260
A = 2. (1 +2 +22+.....+259) vì 2 ⋮ 2
⇔ A = 2 . ( 1 + 2+ 22+ .....+259) ⋮ 2 (đcm)