K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

deo hieu

14 tháng 3 2020

a) ĐKXĐ: \(x\ne\pm4\)

\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

<=> \(5+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

<=> 5(x - 4)(x + 4) + 96(x - 4) = (2x - 1)(x - 4)(4 - x) - (3x - 1)(x + 4)(4 - x)

<=> 20x2 - 16x + 64 = 18x2 + 8x

<=> 20x2 - 16x + 64 - 18x2 - 8x = 0

<=> 2x2 - 24x + 64 = 0

<=> 2(x2 - 12x + 32) = 0

<=> 2(x - 8)(x - 4) = 0

<=> (x - 8)(x - 4) = 0

<=> x - 8 = 0 hoặc x - 4 = 0

<=> x = 8 (tm) hoặc x - 4 = 0 (ktm)

=> x = 8

b) ĐKXĐ: \(x\ne\pm\frac{2}{3}\)

\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)

<=> \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-2^2}\)

<=> \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

<=> (2 + 3x)2 - 6(3x - 2) = 9x2

<=> 16 - 6x + 9x2 = 9x2

<=> 16 - 6x + 9x2 - 9x= 0

<=> 16 - 6x = 0

<=> -6x = 0 - 16

<=> -6x = -16

<=> x = -16/-6 = 8/3

=> x = 8/3

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

19 tháng 9 2017

Để B = 16 thì:

Để học tốt Toán 9 | Giải bài tập Toán 9

⇔ x + 1 = 16 ⇔ x = 15 (thỏa mãn x ≥ -1)

AH
Akai Haruma
Giáo viên
13 tháng 6 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4

=>2*căn(x+5)=4

=>căn (x+5)=2

=>x+5=4

=>x=-1

b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

=>2*căn x-1=16

=>x-1=64

=>x=65

HQ
Hà Quang Minh
Giáo viên
28 tháng 7 2023

c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)

TH1\(x\ge3\)

\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)

TH2\(2\le x< 3\)

\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)

TH3\(0\le x< 2\)

\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

TH4\(x< 0\)

\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)

Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)

4 tháng 7 2023

\(\sqrt{x-1}\) - \(\sqrt{9x-9}\) + \(\sqrt{16x-16}\) = 4 (đk \(x\ge\)1)

\(\sqrt{x-1}-\) \(\sqrt{9\left(x-1\right)}\) + \(\sqrt{16\left(x-1\right)}\) = 4

\(\sqrt{x-1}\) - 3\(\sqrt{x-1}\) + \(4\sqrt{x-1}\) = 4  

 \(\sqrt{x-1}\)( 1 - 3 + 4 ) = 4

  \(\sqrt{x-1}\) . 2 = 4

  \(\sqrt{x-1}\) = 4 : 2

  \(\sqrt{x-1}\) = 2

   \(x-1\) =4

  \(x=4+1\)

 \(x=5\) (thỏa mãn)

Vậy \(x\) = 5 

28 tháng 10 2021

\(ĐK:x\ge1\\ PT\Leftrightarrow12\sqrt{x-1}-\sqrt{x-1}-8\sqrt{x-1}+\sqrt{x-1}=16\\ \Leftrightarrow4\sqrt{x-1}=16\\ \Leftrightarrow\sqrt{x-1}=4\\ \Leftrightarrow x-1=16\\ \Leftrightarrow x=17\left(tm\right)\)

28 tháng 10 2021

có thể làm chi tiết hộ em chỗ pt đc 0 ạ??

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)