K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

A = \(x-2008-2.\frac{1}{2}.\sqrt{x-2008}+\frac{1}{4}+2008\)

\(\left(\sqrt{x-2008}-\frac{1}{2}\right)^2+2008\ge2008\)

Vậy Amax = 2008 khi \(\sqrt{x-2008}-\frac{1}{2}=0\)tự giải tìm x 

11 tháng 11 2016

Đặt \(t=\sqrt{x-2008},t\ge0\) \(\Rightarrow x=t^2+2008\) thay vào BT : 

\(t^2+2008-t+\frac{1}{4}=\left(t-\frac{1}{2}\right)^2+2008\ge2008\)

Đẳng thức xảy ra khi t = 1/2 <=> x = 1/4

Vậy BT đạt giá trị nhỏ nhất bằng 2008 khi x = 1/4

11 tháng 11 2016

đẳng thức xảy ra khi t = 1/2 <=> x = 8033/4

cái này mới đúng nhé!

15 tháng 12 2016

\(dk.ton.tai.A..x\ge2008\)

\(A=x-\sqrt{x-2008}+\frac{1}{4}=\left(x-2008\right)-\sqrt{x-2008}+\frac{1}{4}+2008\)

\(A=\left(\sqrt{x-2008}\right)^2-2.\frac{1}{2}.\sqrt{x-2008}+\left(\frac{1}{2}\right)^2+2008\)

\(A=\left(\sqrt{x-2008}-\frac{1}{2}\right)^2+2008\ge2008\)

đẳng thức khi \(\sqrt{x-2008}=\frac{1}{2}\Leftrightarrow x=2008+\frac{1}{4}\)

10 tháng 11 2016

Đặt \(t=\sqrt{x-2008},t\ge0\) . Vậy thì \(x=t^2+2008\) 

Từ đó ta đưa bài toán về tìm giá trị nhỏ nhất của \(t^2+t+2008+\frac{1}{4}\)

Tới đây bạn có thể tự làm được :)

11 tháng 11 2016

nhập GTNN=2008 nó cho sai bạn ơi

5 tháng 11 2021

giê ơt nha bn

9 tháng 3 2022

k dễ đâu bạn ơi =))))

13 tháng 11 2016

Đầu tiên là rút gọn P

P

\(=\frac{1}{\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{1x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

\(\Rightarrow\frac{1}{P}=\frac{x-\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}-1+\frac{1}{\sqrt{x}}=-1+2008=2007\)

\(\Rightarrow P=\frac{1}{2007}\)