Tổng các góc của 1 đa giác n cạnh trừ đi góc A của nó bằng 570 độ. Khi đó n=..........và góc A=.......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ét hai n-giác đều: A1A2..An và A'1A'2..A'n
=> số đo các góc đều bằng nhau = 180(n-2)/n
hai tgiác A1A2A3 và A'1A'2A'3 bằng nhau
=> tồn tại duy nhất phép dời D: (A1A2A3) --> (A'1A'2A'3)
do phép dời bảo toàn độ lớn của góc (kể cả hướng góc) và khoảng cách 2 điểm
=> qua D: A4 --> A'4
Có thể làm rõ hơn là gọi D: A4 --> A''4
có A3A4 = A'3A''4 và góc định hướng A2Â3A4 = A'2Â'3A''4
=> A''4 ≡ A'4
tương tự qua D: An --> A'n
=> D: (A1A2..An) --> (A'1A'2..A'n)
=> A1A2..An = A'1A'2..A'n
Gọi số cạnh của đa giác là n ta có
Số đo của n góc trong là
180.(n - 2)
Số đo 1 góc trong là (đa giác đều)
\(\frac{180\left(n-2\right)}{n}\)
Số do 1 góc ngoài là
\(180-\frac{180\left(n-2\right)}{n}=\frac{360}{n}\)
Theo đề bài ta có
\(\frac{360n}{n}+\frac{180\left(n-2\right)}{n}=500\)
\(\Leftrightarrow n=9\)
125x^3-(2x+1)^3-(3x-1)^3