Cho x + y + z = 3/2
Tìm MinA =4( \(x^2+y^2+z^2\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:Vì $x^2+y^2+z^2=2$ nên:
$P=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}-\frac{x^3+y^3+z^3}{2xyz}$
$=3+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}+\frac{z^2}{x^2+y^2}-\frac{x^3+y^3+z^3}{2xyz}$
$\leq 3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}-\frac{x^3+y^3+z^3}{2xyz}$
(theo BĐT AM-GM)
$=3+\frac{x^3+y^3+z^3}{2xyz}-\frac{x^3+y^3+z^3}{2xyz}=3$
Vậy $P_{\max}=3$
Dấu "=" xảy ra khi $x=y=z=\sqrt{\frac{2}{3}}$
\(xy+yz+zx\le\dfrac{1}{3}\left(x+y+z\right)^2=\dfrac{4}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2}{3}\)
\(\left(\frac{1}{x}+\frac{1}{y}\right)^2=\left(2-\frac{1}{z}\right)^2\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=4-\frac{4}{z}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=\frac{2}{xy}-\frac{1}{z^2}-\frac{4}{z}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}=-\frac{4}{z}=4\left(\frac{1}{x}+\frac{1}{y}-2\right)\)
\(\Leftrightarrow\frac{1}{x^2}-\frac{4}{x}+4+\frac{1}{y^2}-\frac{4}{y}+4=0\)
\(\Leftrightarrow\left(\frac{1}{x}-2\right)^2+\left(\frac{1}{y}-2\right)^2=0\Rightarrow x=y=\frac{1}{2}\Rightarrow z=-\frac{1}{2}\)
\(\Rightarrow\left(x+2y+z\right)^{2012}=1^{2012}\)
a: A=-(x-7)^2-888<=-888
Dấu = xảy ra khi x=7
b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)
Dấu = xảy ra khi x=1/2 và y=5
c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)
Dấu = xảy ra khi x=-3 và y=5/2
Bài 5:Dự đoán dấu = xảy ra khi a = 2; b=3;c=4. Ta có hướng giải như sau:
\(A=\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)+\frac{a}{4}+\frac{b}{2}+\frac{3}{4}c\)
Áp dụng BĐT AM-GM,ta được:
\(A\ge2\sqrt{\frac{3}{4}a.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{1}{4}c.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{1}{4}.20=13\)
Dấu "=" xảy ra khi a = 2; b=3;c=4
VẬy A min = 13 khi a = 2; b=3;c=4
Bài 1: Bạn xem lại đề, với điều kiện như đã cho thì A có max chứ không có min
Bài 2:
\(A=(a+1)^2+\left(\frac{a^2}{a+1}+2\right)^2=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2\)
\(=(a+1)^2+\left(\frac{(a+1)^2+1}{a+1}\right)^2=(a+1)^2+\left(a+1+\frac{1}{a+1}\right)^2\)
\(=t^2+(t+\frac{1}{t})^2=2t^2+\frac{1}{t^2}+2\) (đặt \(t=a+1)\)
Áp dụng BĐT AM-GM:
\(2t^2+\frac{1}{t^2}\geq 2\sqrt{2}\Rightarrow A\geq 2\sqrt{2}+2\)
Vậy $A_{\min}=2\sqrt{2}+2$. Dấu "=" xảy ra khi \(a=\pm \frac{1}{\sqrt[4]{2}}-1\)
Ta có
\(A=4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2.\frac{1}{3}=3\)