Cho tam giác ABC nhọn,các trung tuyến BN và CM cắt nhau tại trọng tâm G.Gọi I,K lần lượt là tđ của BG và CG.C/m MNKI là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
DO dó: ED là đường trung bình
=>ED//BC và ED=BC/2
Xét ΔGBC có
M,N lần lượt là trug điểm của GB và GC
nênMN là đường trung bình
=>MN//BC và MN=BC/2
Xét ΔGMN có
I là trung điểm của GM
K là trung điểm của GN
Do đó: IK là đường trung bình
=>IK//MN và IK=MN/2
=>IK//ED và IK=BC/4
Xét tứ giác IKDE có DE//IK
nên IKDE là hình thang
Xét ΔACE và ΔABD có
AC=AB
góc A chung
AE=AD
Do đó: ΔACE=ΔABD
Suy ra: CE=BD
Xét ΔEBC và ΔDCB có
EB=DC
EC=BD
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: góc GBC=góc GCB
hay ΔGBC cân tại G
=>GB=GC
=>GD=GE
GI=1/4GB
GK=1/4GC
mà GB=GC
nên GI=GK
=>ID=EK
=>EDKI là hình thang cân
b: DE=BC/2=5cm
IK=1/4BC=2,5cm
=>DE+IK=7,5cm
Tam giác ABC có:
E là trung điểm của AB
D là trung điểm của AC
=> ED là ĐTB của tam giác ABC
=> ED = 1/2 BC và ED // BC (2)
Tam giác GBC có:
Q là trung điểm của BG
P là trung điểm của CG
=> PQ là ĐTB của tam giác BCG
=> PQ = 1/2 BC và PQ // BC (1)
Từ (1) và (2) => DE // PQ và DE = PQ
=> PQED là HBH
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
Q là trung điểm của GB
P là trung điểm của GC
Do đó: QP là đường trung bình của ΔGBC
Suy ra: QP//BC và \(QP=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//QP và ED=QP
hay EDPQ là hình bình hành
GIẢI THEO CÁCH CHỨNG MINH SỐ 5 NHÀ: VẼ HÌNH RA TA THẤY BN và BC LÀ HAI ĐƯỜNG TRUNG TUYẾN CÓ TÍNH CHẤT NHƯ SAU:GN BẰNG 1/3 BN;MG BANG1/3 GC mà BI=IG;GK=KC TẤT CẢ CÁC ĐIỀU TRÊN CHO THẤY IG=GN;MG=GK
NÊN TỨ GIÁC MNIK LÀ HÌNH BÌNH HÀNH NHA!!!!
cảm ơn nhé