K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

a=12 bạn ạ

đúng đó

27 tháng 11 2016

Trả lời rõ ràng ra đc ko ?

27 tháng 12 2016

\(2^5\left(\frac{1}{2}\right)^{2a}< \left(\frac{1}{32}\right)^{12}\Leftrightarrow2^5.2^{-2a}< \left(2^5\right)^{-12}\)

\(\Leftrightarrow2^{5-2a}< 2^{-60}\Rightarrow5-2a< -60\Leftrightarrow a>32,5\)

Số nguyên a nhỏ nhất thoả mãn đề bài là a=33

31 tháng 12 2016

33 nha bạn

Chúc các bạn học giỏi

n hba

28 tháng 5 2017

\(2^5\left(\frac{1}{2}\right)^{2a}=2^5.\frac{1}{2^{2a}}=\frac{2^5}{2^{2a}}=\frac{1}{2^{2a-5}};\left(\frac{1}{32}\right)^{12}=\frac{1}{32^{12}}=\frac{1}{\left(2^5\right)^{12}}=\frac{1}{2^{60}}\)

Ta cần tìm số nguyên a nhỏ nhất để \(\frac{1}{2^{2a-5}}< \frac{1}{2^{60}}\Rightarrow2^{2a-5}>2^{60}\Rightarrow2a-5>60\)

=>2a>65=>\(a>\frac{65}{2}=32,5\) mà a là số nguyên nhỏ nhất => a=33

28 tháng 5 2017

\(\Leftrightarrow\frac{2^5}{2^{2a}}< \frac{1}{2^5}\Leftrightarrow\frac{1}{2^{2a-5}}< \frac{1}{2^5}\Leftrightarrow2^{2a-5}>2^5\)

\(2a-5>5\Leftrightarrow2a>10\Leftrightarrow a>5\)

vì a là số nguyên nhỏ nhất nên a =6

30 tháng 11 2016

Ta có:\(2^5\left(\frac{1}{2}\right)^{2a}< \left(\frac{1}{32}\right)^{12}\)

\(\Leftrightarrow2^5\left(\frac{1}{4}\right)^a< 2^5\cdot\left(\frac{1}{2^{10}}\right)^{12}\)

\(\Leftrightarrow\left(\frac{1}{4}\right)^a< \left(\frac{1}{2^{10}}\right)^{12}\)

\(\Leftrightarrow\left(\frac{1}{2^{2a}}\right)< \left(\frac{1}{2^{10\cdot12}}\right)\)

\(\Leftrightarrow2a>120\)

\(\Leftrightarrow a>60\)

Mà a là số nguyên nhỏ nhất nên a=61

31 tháng 12 2016

33 đúng hơn

9 tháng 3 2020

Phạm Thị Diệu Huyền

Nguyễn Việt Lâm

Phạm Minh Quang

Trần Thanh Phương

9 tháng 3 2020

Akai Haruma

21 tháng 5 2016

Áp dụng cô-si \(\frac{2}{x-3}+\frac{2}{5-x}\ge2\sqrt{\frac{2}{x-3}.\frac{2}{5-x}}\)=\(\frac{4}{\sqrt{\left(x-3\right)\left(5-x\right)}}\)

A = \(\frac{5}{\sqrt{\left(x-3\right)\left(5-x\right)}}\)

Mà \(\sqrt{\left(x-3\right)\left(5-x\right)}\le\frac{x-3+5-x}{2}=1\)(theo cô-si)

\(\Rightarrow\frac{1}{\sqrt{\left(x-3\right)\left(5-x\right)}}\ge1\)

nên A\(\ge\)5

Dấu bằng xảy ra khi x-3=5-x  <=> x=4 (thỏa mãn ĐK 3<x<5)

Vậy Amin =5 khi x=4

31 tháng 10 2017

a, Để A lớn nhất thì \(\left(x+\frac{1}{2}\right)^2\) phải nhỏ nhất

Mà \(\left(x+\frac{1}{2}\right)^2>=0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Rightarrow A=3,5-\left(x+\frac{1}{2}\right)^2\)có giá trị lớn nhất là 3,5

b, Để B đạt giá trị nhỏ nhất thì \(8-\left(x+\frac{1}{3}\right)^2\)phải lớn nhất

\(8-\left(x+\frac{1}{3}\right)^2\)lớn nhất thì \(\left(x+\frac{1}{3}\right)^2\)nhỏ nhất

tương tự câu a ta có \(\left(x+\frac{1}{3}\right)^2=0\Rightarrow\)\(8-\left(x+\frac{1}{3}\right)^2=8\)

\(\Rightarrow B=\frac{3}{8-\left(x+\frac{1}{3}\right)^2}\)đạt giá trị nhỏ nhất là \(\frac{3}{8}\)

31 tháng 10 2017

đi mà tra goole

11 tháng 12 2018

Sửa lại đề: \(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x\right)^2}\)

12 tháng 12 2018

\(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x\right)^2}\ge3\sqrt[3]{\frac{1}{\left(x-1\right)^3\left(2-x\right)^3}}=\frac{3}{\left(x-1\right)\left(2-x\right)}\)

\(=\frac{-3}{x^2-3x+2}=\frac{-3}{\left(x^2-3x+\frac{9}{4}\right)-\frac{1}{4}}=\frac{-3}{\left(x-\frac{3}{2}\right)^2-\frac{1}{4}}\ge\frac{-3}{-\frac{1}{4}}=12\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{\left(x-1\right)^2}=\frac{1}{\left(x-1\right)\left(2-x\right)}=\frac{1}{\left(2-x\right)^2}\\\left(x-\frac{3}{2}\right)^2=0\end{cases}\Leftrightarrow x=\frac{3}{2}}\)

...