Tìm số tự nhiên tự nhiên nhỏ nhất có ba chữ số, biết rằng số đó chia 2 dư 1, chia cho 5 dư 4, chia cho 6 dư 1, chia cho 7 dư 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Vì chia cho 3 dư 2 ; cho 5 dư 4 và 7 dư 6 nên số đó thêm 1 đơn vị sẽ chia hết cho 3 ; 5 và 7
Mà số lớn nhất chia hết cho 3 ; 5 và 7 là 945
Vậy số cần tìm là:
945 − 11 == 944
ĐS: 944
Đáp án:
Số cần tìm là 944.
Giải thích các bước giải:
Số cần tìm chia cho 3 dư 2, chia 5 dư 4, chia 7 dư 6.
Nếu thêm số đó 1 đơn vị thì số mới chia hết cho 3, 5, 7.
Các số có ba chữ số chia hết cho 3, 5, 7 là : 105; 210; 315; ...; 945.
Số lớn nhất có ba chữ số chia hết cho 3, 5, 7 là 945.
Vậy số cần tìm là : 945 - 1 = 944.
Giả sử số cần tìm là 999 thì không chia hết cho 5 và 7 nên số cần tìm là 1 số <999
Nếu số cần tìm cộng thêm 1 đơn vị thì được số mới chia hết cho 3; 5; 7 nên ta tìm số lớn nhất có 3 chữ số chia hết cho 3,5,7
Để số mới chia hết đồng thời cho 3;5;7 thì số mới chia hết cho 3x5x7=105
Số mới có dạng nx105 ta thấy n=9 thoả mãn điều kiện được số mới là số lớn nhất có 3 chữ số chia hết đồng thời cho 3,5,7
Số mới là
9x105=945
Số cần tìm là
945-1=944
Gọi số cần tìm là a < a là stn có 3 chữ số lớn nhất có thể >
a chia 3 dư 2 => a - 2 chia hết cho 3 => a - 2 + 3 chia hết cho 3 => a + 1 chia hết cho 3 ( 1 )
a chia 5 dư 4 => a - 4 chia hết cho 5 => a - 4 + 5 chia hết cho 5 => a + 1 chia hết cho 5 ( 2 )
a chia 7 dư 6 => a - 6 chia hết cho 7 => a - 6 + 7 chia hết cho 7 => a + 1 chia hết cho 7 ( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) kết hợp thêm giả thiết
=> a + 1 thuộc BC(3, 5, 7) và a + 1 stn có 3 chữ số lớn nhất có thể
BCNN(3, 5, 7) = 3 . 5 . 7 = 105
BC(3, 5, 7) = B(105) = { 0 ; 105 ; 210 ; ... ; 840 ; 945 ; 1050 ; ... }
Số A là: 3x5x7-1=105-1=104
Vậy Tổng các chữ số là: 1+4+0=5
Chọn A
phân tích từng số thành thừa số nguyên tố rồi tính .
VD: 1 :
4=22 ;;;6=2.3;;; 8=23 ;;;; 10 = 2.5 ;;;; 12 =22.3
=> BCNN(4;6;8;10;12)=23.3.5=`10
Gọi số cần tìm là A ta có
\(A+1⋮2;5;7\)
\(BCNN\left(2;5;7\right)=2.5.7=70\Rightarrow A+1=70k\) (\(k\in\) N*)
Ta có
\(A+5=\left(A+1\right)+4⋮6\)
\(\Rightarrow70k+4⋮6\Rightarrow70k+4⋮2;3\)
\(70k+4⋮2\)
\(70k+4=66k+3\left(k+1\right)+\left(k+1\right)⋮3\Rightarrow k+1⋮3\)
A nhỏ nhất khi A+5 nhỏ nhất, A+5 nhỏ nhất khi k nhỏ nhất
=> k nhỏ nhất thoả mãn \(k+1⋮3\Rightarrow k=2\)
\(\Rightarrow A+1=70k=70.2=140\Rightarrow A=139\)