Cho p là SNT >3. CMR (p-1)(p+4) chia hết cho 6
Giúp mình với mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn có thể tham khảo nhé: phép chia hết, có dư | HOCMAI Forum - Cộng đồng học sinh Việt Nam
làm biếng đánh máy!! 354346578767696973462646456456456455475676576587687676976
Ta có : số chia hết cho 6 chia hết 2 và 3
Vì 2 là SNT duy nhất => các SNT >3 đều là số lẻ
=>a-1 là số chẵn=> a-1 chia hết cho 2
=>(a-1)(a+4) chia hết cho 2
Vì a>3=> a có dạng 3k+1 hoặc 3k+2
Với a có dạng 3k+1
=>a-1=3k+1-1=3k chia hết cho 3
=>(a-1)(a+4) chia hết cho 3
Với a có dạng 3k+2
=>a+4=3k+4+2=3k+6 chia hết cho 3
=>(a-1)(a+4) chia hết cho 3
Vậy chắc chắn (a-1)(a+4) chia hết cho 6
p^4-q^4 = (p^2-q^2).(p^2+q^2) = (p-q).(p+q).(p^2+q^2)
p,q là snt > 5 => p,q lẻ => p=2a+1 ; q=2b+1 ( a,b thuộc N sao )
=> p^4-q^4=(2a-2b)+(2a+2b+2).(4a^2+4b^2+4a+4b+2) = 16.(a-b).(a+b).(2a^2+2b^2+2a+2b+1) chia hêt cho 16 (1)
Lại có : p,q là snt > 5 =>p,q đều ko chia hết cho 3
=> p^2 và q^2 đều chia 3 dư 1
=> p^4 và q^4 đều chia 3 dư 1
=> p^4-q^4 chia hết cho 3 (2)
Mà p,q là snt > 5 => p,q đều ko chia hết cho 5
=> p^2;q^2 chia 5 dư 1 hoặc 4
=> p^4 và q^4 đều chia 5 dư 1
=> p^4-q^4 chia hết cho 5 (3)
Từ (1);(2) và (3) => p^4-q^4 chia hết cho 16.3.5=240 ( vì 16;3;5 là 3 số nguyên tố với nhau từng đôi một )
=> ĐPCM
Tk mk nha
\(a,\dfrac{3}{4}:\dfrac{6}{x}=\dfrac{5}{4}\\ \dfrac{6}{x}=\dfrac{3}{4}:\dfrac{5}{4}\\ \dfrac{6}{x}=\dfrac{3}{5}\\ x=6:\dfrac{3}{5}\\ x=10\\ b,\left(x+\dfrac{7}{4}\right)\times\dfrac{2}{3}=6\\ x+\dfrac{7}{4}=6:\dfrac{2}{3}\\x+\dfrac{7}{4}=9\\ x=9-\dfrac{7}{4}\\ x=\dfrac{29}{4}\)
4 bạn ạ
Ta có :
Coi : \(A=\left(a-1\right)\left(a+4\right)=\left(a-1\right).a+\left(a-1\right).4=a^2-a+4a-4\)
Vì a là số nguyên tố lớn hơn 3 nên a=3k+1 hoặc a=3k+2
Với a=3k+1:
\(A=\left(3k+1\right)^2-\left(3k+1\right)+4.\left(3k+1\right)-4\)
\(=9k^2+1+2.3k-3k-1+12k+4-4\)
\(=9k^2+6k-3k+12k+1-1+4-4\)
\(=9k^2+15k\)
Với k là số chẵn: A là tổng của 2 số chẵn nên chia hết cho 2
Với k là số lẻ: A là tổng của 2 số lẻ-> là một số chẵn chia hết cho 2
=> Trong mọi trường hợp A luôn chia hết cho 2
Lại có:
9k2
chia hết cho 3
15k chia hết cho 3
=> A=9k2+15k chia hết cho 3
Vì ƯCLN(2,3)=1 và A chia hết cho 2 , 3
=> A chia hết cho 2.3=6
=> A chia hết cho 6
Làm tương tự với k=3k+2
:D