K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

x2+2x+5= x2+2x+1+1

=(x+1)2+4

vì ( x+1)2 >=0 ( với mọi x)

nên (x+1)2+4>= 4 với mọi x

dấu bằng xảy ra khi và chỉ khi

x+1=0

=. x=-1

27 tháng 11 2016

min A=4 

27 tháng 6 2021

Không có max

`a)sqrt{x^2-2x+5}`

`=sqrt{x^2-2x+1+4}`

`=sqrt{(x-1)^2+4}`

Vì `(x-1)^2>=0`

`=>(x-1)^2+4>=4`

`=>sqrt{(x-1)^2+4}>=sqrt4=2`

Dấu "=" xảy ra khi `x=1.`

`b)2+sqrt{x^2-4x+5}`

`=2+sqrt{x^2-4x+4+1}`

`=2+sqrt{(x-2)^2+1}`

Vì `(x-2)^2>=0`

`=>(x-2)^2+1>=1`

`=>sqrt{(x-2)^2+1}>=1`

`=>sqrt{(x-2)^2+1}+2>=3`

Dấu "=" xảy ra khi `x=2`

27 tháng 6 2021

c.ơn bạn nhiều

 

22 tháng 7 2023

A=(\(x^4\)-2\(x^2\)+1)+(\(x^2\)+2x+1)+5

A=\((x^2-1)^2+(x+1 )^2+5\)\(\ge\)\(5\)

Dấu bằng xảy ra\(\Leftrightarrow\)\(\begin{cases} x^2-1=0\\ x+1=0 \end{cases} \)

\(\Leftrightarrow\)\(x=-1\)

Vậy Amin=5 \(\Leftrightarrow\)x=-1

NV
5 tháng 1 2021

\(A=\dfrac{51x^2+136x+102}{17\left(x^2-2x+1\right)}=\dfrac{2\left(x^2-2x+1\right)+49x^2+140x+100}{17\left(x^2-2x+1\right)}\)

\(A=\dfrac{2}{17}+\dfrac{\left(7x+10\right)^2}{17\left(x-1\right)^2}\ge\dfrac{2}{17}\)

\(A_{min}=\dfrac{2}{17}\) khi \(x=-\dfrac{10}{7}\)

17 tháng 12 2020

giúp mk vs khocroikhocroikhocroi

17 tháng 12 2020

lên mạng mà tra là ra mà

25 tháng 7 2019

Chọn A

`#3107.101107`

a)

`x^2 + 6x + 10`

`= (x^2 + 2*x*3 + 3^2) + 1`

`= (x + 3)^2 + 1`

Vì `(x + 3)^2 \ge 0` `AA` `x`

`=> (x + 3)^2 + 1 \ge 1` `AA` `x`

Vậy, GTNN của bt là 1 khi `(x + 3)^2 = 0`

`<=> x + 3 = 0`

`<=> x = -3`

b)

`4x^2 - 4x + 5`

`= [(2x)^2 - 2*2x*1 + 1^2] + 4`

`= (2x - 1)^2 + 4`

Vì `(2x - 1)^2 \ge 0` `AA` `x`

`=> (2x - 1)^2 + 4 \ge 4` `AA` `x`

Vậy, GTNN của bt là `4` khi `(2x - 1)^2 = 0`

`<=> 2x - 1 = 0`

`<=> 2x = 1`

`<=> x = 1/2`

c)

`x^2 - 3x + 1`

`= (x^2 - 2*x*3/2 + 9/4) - 5/4`

`= (x - 3/2)^2 - 5/4`

Vì `(x - 3/2)^2 \ge 0` `AA` `x`

`=> (x - 3/2)^2 - 5/4 \ge -5/4` `AA` `x`

Vậy, GTNN của bt là `-5/4` khi `(x - 3/2)^2 = 0`

`<=> x - 3/2 = 0`

`<=> x = 3/2`