K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

đề ko rõ lắm

26 tháng 11 2017

1,0 x 1,0= 10,10

19 tháng 7 2018

a) ab + a + b = 48                                  b) 57-ab=a+b                                                         c) 63-(a+b)=ab                             

ab + a.1 + b = 48                                       57=a+b+ab                                                             63=ab+a-b

a(b+1)+b+1=48+1                                      57=a+b.1+ab                                                          63=ab+a.1-b

a(b+1)+(b+1).1=49                                     57=a+b(a+1)                                                           63=a(b+1)-b

(a+1)(b+1)=49                                             57+1=a+1+b(a+1)                                                  63-1=a(b+1)-(b+1).1

Ta có bảng :                                                 58=(a+1).1+b(a+1)                                                 62=(a-1)(b+1)

a+1      1          7         49                              58=(a+1)(b+1)                                                      Ta có bảng :

b+1      49        7           1                              Ta có bảng :                                                       a-1      1       3       7       9       21        63        

a          0          6           48                            a+1       1        2         29         58                        b+1     63     21     9       7        3          1

b          48        6            0                              b+1      58      29        2           1                           a        2       4      8       10       22       64

                                                                       a          0        1        28          57                         b         62     20    8       6         2         0

                                                                       b          57      28        1           0

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

Hiển nhiên $a-b>0$.

Ta có:

\(P=\sqrt{ab}.\sqrt{ab}+\frac{a-b}{\sqrt{ab}}=\sqrt{ab}.\frac{a+b}{a-b}+\frac{a-b}{\sqrt{ab}}\geq 2\sqrt{a+b}\) theo BĐT AM-GM.

Mặt khác:

Từ ĐKĐB suy ra \(ab(a-b)^2=(a+b)^2\)

\(\Leftrightarrow ab[(a+b)^2-4ab]=(a+b)^2\)

Đặt $a+b=x; ab=y$ với $x,y>0; x^2\geq 4y$ thì:

\(y(x^2-4y)=x^2\Leftrightarrow x^2(y-1)=4y^2\)

Hiển nhiên $y>1$

$\Rightarrow x^2=\frac{4y^2}{y-1}=\frac{4(y^2-1)}{y-1}+\frac{4}{y-1}$

$=4(y+1)+\frac{4}{y-1}=4(y-1)+\frac{4}{y-1}+8$

$\geq 2\sqrt{4(y-1).\frac{4}{y-1}}+8=16$ (AM-GM)

$\Rightarrow x\geq 4$ hay $a+b\geq 4$

Do đó: $P\geq 2\sqrt{a+b}\geq 2\sqrt{4}=4$

Vậy $P_{\min}=4$
Giá trị này đạt tại $(a,b)=(2+\sqrt{2}, 2-\sqrt{2})$

21 tháng 5 2021

C hỗ trợ em câu hình mới nhất em gửi trong inb nhé c !

a,b.ab,a=ab,ab

=>ab.aba=abab

=>ab.aba=ab.101

=>aba=101

=>(a;b)=(1;0)

vậy (a;b)=(1;0)

Tham khảo
Tìm các chữ số a: b sao cho: a,b x ab,a = ab,ab,Toán học Lớp 5,bài tập Toán học Lớp 5,giải bài tập Toán học Lớp 5,Toán học,Lớp 5

Hơi mờ thông kảm🙂🔫

22 tháng 10 2023

 

a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\\a< >b\end{matrix}\right.\)

b: \(M=\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{b}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{b\left(a+\sqrt{ab}\right)+\sqrt{b}\left(a-\sqrt{ab}\right)}{a^2-ab}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(a-b\right)}\cdot\dfrac{ab+b\sqrt{ab}+a\sqrt{b}-b\sqrt{a}}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(\sqrt{a}-\sqrt{b}\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}\left(\sqrt{ab}+b+\sqrt{a}-\sqrt{b}\right)}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{a\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2}\)

\(=\dfrac{2\sqrt{a}\left(\sqrt{a}+\sqrt{b}-1\right)+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+2\sqrt{ab}-2\sqrt{a}+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}-\sqrt{a}+b-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}+b-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{\left(2\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2\sqrt{a}+\sqrt{b}-1}{2a}\)

Giả sử như a=0,1 và b=0,11 thì M<0 nha bạn

=>Đề này sai rồia: ĐKXĐ: 

b: \(M=\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{b}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{b\left(a+\sqrt{ab}\right)+\sqrt{b}\left(a-\sqrt{ab}\right)}{a^2-ab}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(a-b\right)}\cdot\dfrac{ab+b\sqrt{ab}+a\sqrt{b}-b\sqrt{a}}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(\sqrt{a}-\sqrt{b}\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}\left(\sqrt{ab}+b+\sqrt{a}-\sqrt{b}\right)}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{a\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2}\)

\(=\dfrac{2\sqrt{a}\left(\sqrt{a}+\sqrt{b}-1\right)+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+2\sqrt{ab}-2\sqrt{a}+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}-\sqrt{a}+b-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}+b-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{\left(2\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2\sqrt{a}+\sqrt{b}-1}{2a}\)

Giả sử như a=0,1 và b=0,11 thì M<0 nha bạn

=>Đề này sai rồi

25 tháng 11 2016

ta thấy  thương lớn hơn số chia 0,0b đơn vị nên a chỉ có thể là1 

nếu b là 2 thì thường  là 14,58 sẽ không được nên b chỉ có thể la 1

vay ab=11

b: =>a=5-b

\(\Leftrightarrow\left(5-b\right)^2+b^2=13\)

\(\Leftrightarrow2b^2-10b+25-13=0\)

\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)

hay \(b\in\left\{2;3\right\}\)

\(\Leftrightarrow a\in\left\{3;2\right\}\)

4 tháng 1 2022

b: =>a=5-b

⇔(5−b)2+b2=13⇔(5−b)2+b2=13

⇔2b2−10b+25−13=0⇔2b2−10b+25−13=0

⇔(b−2)(b−3)=0⇔(b−2)(b−3)=0

hay b∈{2;3}b∈{2;3}

⇔a∈{3;2}⇔a∈{3;2}

 

3 tháng 8 2015

a)ab=4(a+b)+6

10a+b=4a+4b+6

10a-4a=4b-b+6

6a=3b+6

6(a-1)=3b

2(a-1)=b

=>a=1;b=0                                      a=2;b=2                                   a=3;b=4                      a=4;b=6

a=5;b=8                                        

Vậy ab thuộc{10;22;34;46;58}