Cho tam giác ABC có góc B= góc C .Tia phân giác cua goc A cắt BC tại D . CMR :
a) Tam giác ADB=tam giác ADC
b) AB=AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADC có
AD chung
góc BAD=góc CAD
AB=AC
=>ΔABD=ΔACD
b: Xét ΔDHB và ΔDHC có
DH chung
HB=HC
DB=DC
=>ΔDHB=ΔDHC
=>góc BDH=góc CDH
=>DH là phân giác của góc BDC
c: ΔABC cân tại A
mà AH là phân giác
nên AH vuông góc CB
b ) GÓC B = GÓC C
=> TAM GIÁC ABC CÂN TẠI A
=> AB = AC (ĐPCM)
a) XÉT 2 TAM GIÁC ADB VÀ ADC, CÓ:
AB = AC (THEO CÂU B)
AD LÀ CẠNH CHUNG
GÓC A1 = GÓC A2 (AD LÀ PHÂN GIÁC, GT)
=> TAM GIÁC ADB = ADC (C.G.C) (ĐPCM)
a: Xét ΔADB và ΔADC có
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
\(\widehat{B}=\widehat{C}\)
Do đó: ΔADB=ΔADC
a)Xét ΔADB và ΔADE có:
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)
AD:cạnh chung
=> ΔADB=ΔADE(c.g.c)
b)Vì: ΔADB=ΔADE(cmt)
=> \(\widehat{ABD}=\widehat{AED};BD=DE\)
Xét ΔDBH và ΔDEK có:
\(\widehat{BHD}=\widehat{EKD}=90^o\left(gt\right)\)
BD=DE(cmt)
\(\widehat{HBD}=\widehat{KED}\left(cmt\right)\)
=>ΔDBH=ΔDEK(cạnh huyền-góc nhọn)
=>BH=EK
Ta có hình vẽ sau:
a/ Xét ΔADB và ΔADE có:
AD: Cạnh chung
\(\widehat{BAD}=\widehat{EAD}\) (gt)
AB = AE (gt)
=> ΔADB = ΔADE (c.g.c) (đpcm)
b/ Vì ΔADB = ΔADE (ý a) => \(\widehat{ABD}=\widehat{AED}\) (2 góc tương ứng)
và DB = DE (2 cạnh tương ứng)
Xét 2Δ vuông: ΔDBH và ΔDEK có:
DB = DE (cmt)
\(\widehat{ABD}=\widehat{AED}\) (cmt)
=> ΔDBH = ΔDEK (cạnh huyền - góc nhọn)
=> BH = EK(2 cạnh tương ứng)(đpcm)
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
a) Xét \(\Delta ABC\) và \(\Delta ADB\) có:
\(\widehat{A}\) chung
\(\widehat{ACB}=\widehat{ABD}\) (gt)
\(\Rightarrow\Delta ABC\) đồng dạng với \(\Delta ADB\) (g-g)
\(\Rightarrow\dfrac{AB}{AD}=\dfrac{AC}{AB}\)
\(\Rightarrow AB^2=AC.AD\)
a: AB<AC
=>góc B>góc C
góc ADB=góc DAC+góc ACD
góc ADC=góc BAD+góc ABD
mà góc ACD<góc ABD; góc BAD=góc CAD
nên góc ADB<góc ADC
b: Xét ΔABE có
AD vừa là đường cao, vừa là phân giác
=>ΔABE cân tại A
c: AD là phân giác
=>BD/AB=CD/AC
mà AB<AC
nên BD<CD