a, Chứng tỏ tổng của hai số lẻ liên tiếp là một số chẵn.
b, Chứng tỏ tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) gọi 3 số đó là a;b;c ta có :
a:3 = ?(dư 1)
b:3=(?(duw2)
c:3 = ?(dư 0)
=> a+b+c :3 (dư 0)
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a) +) Nếu 2 số đó cùng chẵn \(\Rightarrow\)cả 2 số đó đều \(⋮2\)\(\Rightarrow\)Tổng \(⋮2\)(1)
+) Nếu 2 số đó cùng lẻ
Gọi 2 số lẻ lần lượt là \(2a+1\)và \(2b+1\)( \(a,b\inℕ\))
Ta có: \(\left(2a+1\right)+\left(2b+1\right)=4b+2=2\left(2b+1\right)⋮2\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
b) Gọi 3 số tự nhiên liên tiếp là \(a\), \(a+1\), \(a+2\)( \(a\inℕ\))
Ta có: \(a+\left(a+1\right)+\left(a+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrowđpcm\)
a )Gọi 3 số tự nhiên liên tiếp đó là :3k; 3k + 1 ; 3k + 2 ( k thuộc N )
- > Tổng 3 số đó là 3k + ( 3k + 1 ) + ( 3k + 2 ) = 9k +3 = 3 ( 3k + 1 )
Vì 3 ( 3k + 1 ) chia hết cho 3 - > đpcm
b ) Gọi 5 số chẵn liên tiếp là 5k ; 5k + 1 ; 5k + 2 ; 5k + 3; 5k + 4 ( k thuộc N, k chẵn )
- > Tổng 5 số đó là : 5k + ( 5k +1 ) + ( 5k +2 ) + ( 5k + 3 ) + ( 5k + 4 )
= 25 k + 10
25k = 25 . 2m ( k là số chẵn nên đc viết dưới dạng 2m, m thuộc N )
= 50m chia hết cho 10; 10 cũng chia hết cho 10
Mà tổng 2 số chia hết cho 10 sẽ chia hết cho 10
- > đpcm
bài 3
http://data.nslide.com/uploads/resources/620/3533369/preview.swf
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
b, gọi ba số tự nhiên liên tiếp là n, n+1, n+2 (n thuộc N)
ta có: n+(n+1)+(n+2)
=3n+3
=3(n+1) chia hết cho 3
Vì 3n chia hết cho 3, 3 chia hét cho 3
=>Tổng 3 ố tự nhiên liên tiếp chia hết cho 3
Cứ thé áp dụng cho bài a,c
Nếu e cần c sẽ cho cái bản lưu ý, sau này làm mấy bài này dễ không hà.
a) gọi 2 số tự nhiên liên tiếp là
n ; n+1
n + n + 1 = 2n + 1
vì 2n chia hết cho 2
1 không chia hết cho 2
=> 2n + 1 không chia hết cho 2
vậy tổng 2 số tự nhiên liên tiếp ko chia hết cho 2
hai số lẻ liên tiếp có dạng 2n + 1 và 2n + 3
tổng hai số lẻ liên tiếp là 2n + 1 + 2n + 3 = 2n + 4
2n + 4 ⋮ 2 ∀ n ϵ N
vậy tổng hai số lẻ liên tiếp chia hết cho 2
b, 3 số tự nhiên liên tiếp có dạng
n , n + 1 , n + 2 với n ϵ N
tổng ba số tự nhiên liên tiếp là
n + n + 1 + n + 2 = 3n + 3 ⋮ 3 ∀ n ϵ N
vậy tổng ba số tự nhiên liên tiếp chia hết cho 3
a) ví dụ: 2 số tự nhiên liên tiếp 7 và 9
thì 7+9 sẽ =16 và 16 là 1 số chẵn
nên 2 số tự nhiên lẻ liên tiếp tổng của chúng bao giờ cũng là 1 số chẵn
b)
Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2
Tổng của 3 số tự nhiên liên tiếp
a+a+1+a+2=(a+a+a)+(1+2)=3a + 3
Vì 3a chia hết cho 3 và 3 chia hết cho 3 nên 3a +3 chia hết cho 3
Vậy tổng của 3 số tự nhiên liên tiếp chia hết cho 3