K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤7

Phương trình đã cho tương đương với:

3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

⇔x=6

vì với 23≤x≤7

thì: (33x−2+4+17−x−1+3x2+x−2)

3 tháng 6 2019

\(3x^3+11x^2-3x+7-24x\sqrt{8x-1}+3\sqrt{8x-1}=0\)

Nhận thấy x = 0 không là nghiệm của pt

\(\Leftrightarrow3x^2+11x-3+\frac{7}{x}-24\sqrt{8x-1}+\frac{3}{x}\sqrt{8x-1}=0\)

Đặt \(\frac{1}{x}=t\)

\(\Leftrightarrow3x^2+11x-\left(3-7t+3t\left(\frac{8}{t}-1\right)\sqrt{\frac{8}{t}-1}\right)=0\)

Coi t là tham số mà tính nghiệm

3 tháng 8 2016

Khó quá

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

6 tháng 8 2023

Đk: \(x\ge-2\)

PT \(\Leftrightarrow\) \(x\left(12-4\sqrt{x+2}\right)+3x^2-20x-7=0\)

\(\Leftrightarrow x.\dfrac{144-16\left(x+2\right)}{12+4\sqrt{x+2}}+\left(x-7\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\dfrac{-4x\left(x-7\right)}{3+\sqrt{x+2}}+\left(x-7\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\\left(3+\sqrt{x+2}\right)\left(3x+1\right)=4x\end{matrix}\right.\)

Đặt \(u=\sqrt{x+2}\Leftrightarrow x=u^2-2\left(u\ge0\right)\)

PT (2) \(\Leftrightarrow\left(3+u\right)\left(3u^2-5\right)=4\left(u^2-2\right)\)

\(\Leftrightarrow9u^2-15+3u^3-5u=4u^2-8\)

\(\Leftrightarrow3u^3+5u^2-5u-7=0\) \(\Leftrightarrow u=\dfrac{-1+\sqrt{22}}{3}\)

\(\Leftrightarrow x=\dfrac{5-2\sqrt{22}}{9}\)

Vậy...

AH
Akai Haruma
Giáo viên
6 tháng 8 2023

Lời giải:
ĐKXĐ: $x\geq -2$

PT $\Leftrightarrow 3x^2-20x-7=4x\sqrt{x+2}-12x$

$\Leftrightarrow (x-7)(3x+1)=4x(\sqrt{x+2}-3)=4x.\frac{x-7}{\sqrt{x+2}+3}$

$\Leftrightarrow x-7=0$ hoặc $3x+1=\frac{4x}{\sqrt{x+2}+3}$

Nếu $x-7=0\Leftrightarrow x=7$ (tm) 

Nếu $3x+1=\frac{4x}{\sqrt{x+2}+3}$

$\Leftrightarrow 9x+3+(3x+1)\sqrt{x+2}=4x$

$\Leftrightarrow 5x+3+(3x+1)\sqrt{x+2}=0$

$\Leftrightaqrrow 5x+3=-(3x+1)\sqrt{x+2}$

$\Rightarrow (5x+3)^2=(3x+1)^2(x+2)$

$\Leftrightarrow 9x^3-x^2-17x-7=0$

$\Leftrightarrow (x+1)(9x^2-10x-7)=0$

$\Rightarrow$........

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm