K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AOCM có 

\(\widehat{MAO}\) và \(\widehat{MCO}\) là hai góc đối

\(\widehat{MAO}+\widehat{MCO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AOCM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

nên A,O,C,M cùng nằm trên một đường tròn(đpcm)

a: Xét (O) có

MB,MA là tiếp tuyến

nên MB=MA

Xét (O') cos

MA,MC là tiếp tuyến

nên MA=MC=>MA=BC/2

Xét ΔABC có

AM la trung tuyến

AM=BC/2

Do đó; ΔABC vuông tại A

b: Gọi H là trung điểm của OO'

Xét hình thang OBCO' có

M,H lần lượt là trung điểm của BC,OO'

nên MH là đường trung bình

=>MH//BO//CO'

=>MH vuông góc với BC

=>BC là tiếp tuyến của (H)

9 tháng 8 2015

Tóm tắt thôi nhé

a) Các cạnh // => Hình bình hành

T/g OBE = t/g OCD (^B=^C=90*, OB=OC, ^BOE=^COD vì cùng phụ với EOD) => OE = OD (2 cạnh kề) => Hình thoi

b) Nối OO' => 2 tam giác cân cùng góc đáy => so le trong => //

c) 1] OO' là đường trung trực của AB => đường trung bình

2] CB//OO'

Cm tương tự 1] để được BD//OO' => Ơ-clit => thẳng hàng