cho ƯCLN(a,b)=1.Tìm ƯCLN a)a+b và a-b b)7a+9b và 3a+4b c)5a+3b và 13a+8b d)7a+3 và 8a-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(a x b; a2+b2) là d
=> a x b chia hết cho d => a2+2a x b+b2 chia hết cho d
a2+b2 chia hết cho d
=> a x b chia hết cho d => a hoặc b chia hết cho d
Kết hợp (a;b)=1
=> d=1
=> ƯCLN(a x b; a2+b2) = 1
k cho mình nha!
Bài 1:
Do $ƯCLN(a,b)=16$ nên đặt $a=16x, b=16y$ với $x,y$ tự nhiên và $x,y$ nguyên tố cùng nhau.
Khi đó:
$a+b=96$
$\Rightarrow 16x+16y=96$
$\Rightarrow x+y=6$
Mà $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,5), (5,1)$
$\Rightarrow (a,b)=(16,80), (80,16)$
Bài 2:
Do $ƯCLN(a,b)=8\Rightarrow$ đặt $a=8x, b=8y$ với $x,y$ là số tự nhiên nguyên tố cùng nhau.
Khi đó:
$ab=8x.8y=384$
$\Rightarrow xy=6$
Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$
$\Rightarrow (x,y)=(8,48), (16, 24), (24,16), (48,8)$
a, b: Bạn xem lại đề.
c.
Vì $ƯCLN(a,b)=12$ và $a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=12x+12y=120\Rightarrow x+y=10$
Vì $x>y, (x,y)=1$ nên $x,y$ có thể nhận giá trị là:
$(x,y)=(9,1), (7,3)$
$\Rightarrow (a,b)=(108. 12), (84, 36)$
d.
Vì $ƯCLN(a,b)=28$ và $a>b$ nên đặt $a=28x, b=28y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=28x+28y=224$
$\Rightarrow x+y=8$
Vì $x>y$ và $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(7,1), (5,3)$
$\Rightarrow (a,b)=(196, 28), (140, 84)$