Chứng minh rằng:
6410-3211-1613 chia hết cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 7 8 + 7 9 + 7 10 = 7 8 . 1 + 7 + 7 2 = 7 8 . 57 ⋮ 57
b, 10 10 - 10 9 - 10 8 = 10 8 . ( 10 2 - 10 - 1 ) = 10 8 . 89 ⋮ 89
c, 64 10 - 32 11 - 16 3 = ( 2 6 ) 10 - ( 2 5 ) 11 - ( 2 4 ) 13 = 2 60 - 2 55 - 2 52 = 2 52 2 8 - 2 3 - 1
= 2 52 . 247 = 2 52 . 13 . 19 ⋮ 19
3a+4b=3a+[3+1]b=3a+3b+b=3[a+b]+b
vì 3[a+b] chia hết cho 19 nên b chia hết cho 19
4a+3b=a[3+1]+3b=3a+a+3b=3[a+b] +a
vì 3[a+b] chia hết cho 19 nên b chia hết cho 19
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
Gọi d là Ước chung lớn nhất của 11a + 2b và 18a + 5
=> 11a + 2b chia hết cho d
=> 18a + 5b chia hết cho d
=> 11( 18a + 5b ) - 18( 11a + 2b ) chia hết cho d
=> ( 198a + 55b ) - ( 198a + 36b ) chia hết cho d
=> 19b chia hết cho d ( 1 )
=> 5( 11a + 2b ) - 2( 18a + 5b ) chia hết cho d
=> ( 55a + 10b ) - ( 36a + 10b ) chia hết cho d
=> 19a chia hết cho d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra 19 chia hết cho d
=> d thuộc Ư(19)
=> d thuộc { 1 ; 19 }
Mà d là Ước chung lớn nhất của 11a + 2b và 18a + 5b
=> d = 19.
Ta co : 10^k-1 chia het cho 19
=> 10^k-1=19n(n thuoc N)
=>10^k=19n+1
=>10^2k=(10^k)^2=(19n+1)^2=(19n+1)(19n+1)=362n^2+38n+1
=>10^2l-1=361n^2+38n+1-1=361n^2+38n chia het cho 19
=>10^2k-1 chia het cho 19
**** nhe
nhân 10a+2b với 1 số và 18a+5b với 1 số sao cho khi trừ 2 số cho nhau xuất hiên 1 số có 19a hoặc 19b thì luôn chia hết cho 19
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
\(64^{10}-32^{11}-16^{13}=2^{60}-2^{55}-2^{52}=2^{52}\left(2^8-2^3-1\right)=2^{52}\cdot13\cdot19\)chia hết cho 19
thank you