Tích của một số tự nhiên, m, và 7920 là một số chính phương. Tìm giá trị nhỏ nhất của m thoả mãn điều kiện.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nào các dân chơi, vào trả lời đi nào.
*ai nhanh mà đúng thì k nha :33
Câu hỏi của Ngân Hoàng Xuân - Toán lớp 8 | Học trực tuyến
Đáp án A.
Giả sử z = a + b i , a , b ∈ ℝ . Khi đó
z − 3 + 4 i + z + 2 − i = 5 2 ⇔ a − 3 2 + b + 4 2 + a + 2 2 + b − 1 2 = 5 2
Coi I a ; b , P 3 ; − 4 , Q − 2 ; 1 và R 4 ; 3 , với chú ý P Q = 5 2 thì đẳng thức trên trở thành I P + I Q = P Q .
Đẳng thức trên chỉ xảy ra khi I thuộc đoạn PQ. Hơn nữa z − 4 − 3 i = I R .
Nhận thấy tam giác PQR là tam giác có ba góc nhọn nên
min R I = d R , P Q ; max R I = max R P , R Q
Bằng tính toán ta có m = 4 2 ; M = 5 2 . Suy ra M 2 + m 2 = 82 .
m là số tự nhiên nên ta chọn m nhỏ nhất là 0.
Khi đó m . 7920 = 0 . 7920 = 0 = 02
Vậy GTNN của m là 0 thỏa mãn điều kiện