\(tính:1.2+2.3+3.4+4.5+....+99.100\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`
`3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`
`3S = 1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`
`3S = 99.100.101`
`S = 33.100.101`
`S = 333300`
3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100
=99.100.101
S=33.100.101
=333300
S=1.2+ 2.3+4,5.......+99.100
Nhân cả 2 vế với 3, ta được:
3S=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
----> S = (99.100.101):3
S= 333300
Vậy A=333300
\(\text{Ta có: A = 1.2+2.3+3.4+4.5+...+99.100 }\)
=> 3A = 3.(1.2+2.3+3.4+4.5+...+99.100)
=> 3A = 1.2.(3 - 0) +2.3.(4 - 1) + 3.4.(5-2) + ........ + 99.100.(101 - 98)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .......... + 99.100.101
=> 3A = 99.100.101
\(\Rightarrow A=\frac{99.100.101}{3}=333300\)
k mình nếu đúng OK
Áp dụng công thức ta có :
\(A=1.2+2.3+3.4+...+99.100=\frac{99.100.101}{3}=333300\)
Ta có : M = 1 . 2 + 2 . 3 + 3 . 4 + ........+ 99 . 100
3M = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + ..........+ 99 . 100 . ( 101 - 98 )
3M = 1 . 2 . 3 + 2 . 3 . 4 - 1. 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ..........+ 99 . 100 . 101 - 98 . 99 . 100
3M = 99 . 100 . 101
M = 33 . 100 . 101 = 333300
Đúng nha !!!
A=1.2+ 2.3+.......+99.100
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
----> A = (99.100.101):3
A = 333300
Vậy A=333300
gọi tổng là S ta có
3S=1.2.3-0.1.2+2.3.4-1.2.3+....+99.100.101-98.99.100
=>3s=99.100.101
=>S=99.100.101:3=333300
A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 333300
A=1*2+2*3+3*4+...+99*100
A=100*101*102:3
A=343400(công thức)
gọi tổng là S ta có
3S=1.2.3-0.1.2+2.3.4-1.2.3+......+99.100.101-98.99.100
=>3S=98.99.100
=>S=\(\frac{98.99.100}{3}=323400\)
S=1.2+2.3+3.4+...+99.100
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3S=99.100.101
S=(99.100.101):3=333300
đặt A=1.2+2.3+...+99.100
=>3A=1.2.3+2.3.3+...+99.100.3
=1.2.3+2.3.(4-1)+...+99.100(101-98)
=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100
=99.100.101=999900
=>A=999900:3=333300